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COUNTERACTING TRAFFIC CONGESTION

USING INTELLIGENT DRIVER FEEDBACK

David K. Drum

Dr. Timothy C. Matisziw, Thesis Supervisor

ABSTRACT

Traffic congestion is a daily occurrence in urban highway networks worldwide.

It is not possible, however, for society to build its way out of congestion; rather,

smarter roads and vehicles are needed. While the development of a smarter trans-

portation system is underway, full implementation is years or decades from now.

Yet, some of the sensing technology needed for smarter vehicles is already widely

deployed in the form of smart phones. This thesis develops a novel method for

recognizing traffic congestion using an artificially intelligent heuristic that could

be implemented in a smart phone application or embedded system. Its goal is

to provide intelligent feedback to a driver or autonomous vehicle control system

to counteract stop-and-go traffic, a defining feature of urban highway congestion.

Evaluation of the method indicates that a specific condition during stop-and-go

traffic can be recognized accurately. A driver or control system acting upon feed-

back provided by the artificially intelligent system can improve traffic flow on the

roadway by 1% to 3.5% over the course of the test duration.
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Chapter 1

Introduction

In Tom Vanderbilt’s popular 2008 book Traffic: Why We Drive the Way We Do (and

What It Says About Us), he playfully cites a German advertisement: “You’re not

stuck in a traffic jam, you are the traffic jam” (Vanderbilt, 2008, p. 131). The ad

works because it underscores a real truth about contemporary automotive culture.

In trying to get somewhere, we are routinely stuck going nowhere.

The emphasis on the car as the primary means of transportation in America has

produced some serious, if unintended, consequences: underfunded infrastructure

and public transportation services, daily traffic congestion on urban freeways,

and a looming environmental crisis, among others. The adoption of autonomous

vehicles, though decades away, promises a new mobility-on-demand transportation

paradigm in which the usage of each individual vehicle is maximized, dramatically

dropping the number of vehicles in use and, as a result, reducing congestion and

environmental impact. In the meantime, the appearance of connected vehicles

sharing real-time information will empower drivers to make more informed choices
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about traffic conditions, improving traffic situations on small and large scales. Some

of that real-time information can be sensed today by very simple instruments,

such as sensors found in any of the modern smart phones used by millions of

commuters on a daily basis. Given that the required sensing platform already exists,

it’s reasonable to expect that a smart phone application could detect certain traffic

conditions in isolation and offer a driver useful information during their commute.

Exploring that hypothesis and demonstrating that it can have a positive effect on

overall traffic conditions is the subject of this thesis.

Much traffic congestion arises due to the way in which drivers respond to traffic

conditions they encounter. Thus, providing drivers with feedback as to which of

their responses may best alleviate congestion could yield positive impacts for an

urban transportation system. This thesis investigates the extent to which a single

vehicle can adjust its speed at the correct time to avoid amplification of or even

dampen an upstream-traveling velocity shockwave for the benefit of the driver

and the entire road system. To accomplish this, a traffic simulation framework is

developed and implemented. Events collected from a simulation are then used

to train a machine learning algorithm to detect opportunities for positive speed

adjustments and provide feedback to the driver. Results indicate that critical speed

adjustments and response times can be identified and, if better utilized by drivers,

can have a positive impact on overall flow.

Traffic congestion in urban areas is known to be heavily influenced by the

way in which individual drivers react to traffic conditions. When individuals

overreact to or overcompensate for changing circumstances, a lack of capacity on

the roadway can cause velocity shockwaves to radiate throughout the system. These

2
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shockwaves are a self-organizing, self-amplifying emergent behavior known as

a traffic jam. If individuals were able to identify such velocity shockwaves and

were able to respond in an appropriate manner, the waveforms could be mitigated,

resulting in lower congestion. The ability to detect shockwaves and provide drivers

with strategic responses will create destructive interference in the congested traffic

velocity waveform, which will reduce the variance in drivers’ speeds, harmonizing

traffic flow. To this end, the focus of this thesis is on the design and implementation

of a traffic simulation software system for: a) modeling triggered behavior change

at the level of the individual vehicle, b) generating robust representations through a

variety of wavelet transformations, and c) producing data suitable for input into a

support vector machine (a type of Machine Learning algorithm) through which the

intelligent feedback heuristic can be implemented.

The intelligent feedback heuristic proposed in this thesis could be deployed as

a mobile application, leveraging the multitude of smart phones and other mobile

communication devices utilized by urban commuters. Such an application would

allow commuters to detect and appropriately respond to traffic conditions in such a

way that could dramatically reduce the worst effects of congested urban freeway

traffic. For example, an application could be designed to provide a driver with an

alert (designed to minimize potential driver confusion and distraction) advising

the driver to strategically modify their acceleration in order to promote smoother

traffic flow. In time this heuristic could also be embedded into adaptive cruise

control and autonomous driving systems, allowing vehicles to jointly work toward

the systemic goal of speed harmonization. In addition, an intelligent technology

such as this could offer opportunities for drivers and vehicles to share information

3
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about conditions amongst themselves and to coordinate their actions and amplify

their effects. Anonymized data voluntarily shared by participants could provide

summaries of current traffic conditions of use to public and private entities. Through

the incremental accretion of individual actions, it would become possible to realize

a system-wide effect. If one person can trigger a traffic jam, one person may indeed

be able to defuse it.

1.1 The Automobile’s Unintended Consequences

The vision of personal mobility that became so central to the American Dream in

the postwar 20th century is exacting a high societal cost given that the resulting

congestion has not been addressed in a comprehensive, coordinated way. Personal

motor vehicle transportation is the default transportation mode choice—tacitly

required—in much of the United States, particularly the vast expanses of suburbia

surrounding major cities. In the process of population shifting from the cities to

the suburbs, America built nearly four million miles of roads (NationalAtlas.gov,

2013) to facilitate urban movement. At the same time, population growth nation-

wide combined with increasing use of personal automobiles has created additional

demand for new roads and increased access, pitting expansion against maintenance.

Americans aspire to the egalitarian ideal of public roads, but behave quite dif-

ferently, chafing at control systems like ramp meters (Levinson and Zhang, 2006),

rejecting needed changes in traffic management systems such as congestion pricing

and toll roads (Schaller, 2010), eschewing alternative transportation mode choices

and relegating neglected public transportation systems to the bottom of the heap,

4
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Figure 1.1: (a) Observed annual and decadal global mean surface temperature
anomalies from 1850 to 2012 and (b) map of the observed surface temperature
change from 1901 to 2012 (Stocker et al., 2013, reproduced with permission)

5
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Figure 1.2: Projected Temperature Change by 2100 (Melillo et al., 2014, in the public
domain)

the fate of people who cannot drive (Glaeser et al., 2008; Sanchez, 2008). As a result,

urban, and even suburban, traffic congestion continues to worsen, offset briefly by

the recent economic recession (Schrank et al., 2012). More sobering, America’s for-

eign policy has been heavily influenced by its dependence on low cost fuel (Yergin,

2011). Moreover, human-generated climate change is now, and has been for some

time, an established scientific fact (Figure 1.1) (Pachauri and Intergovernmental

Panel on Climate Change, 2008; Cook et al., 2013; Stocker et al., 2013; American

Association for the Advancement of Science, 2014) with consequences not to be

realized for decades (Figure 1.2). The transportation sector, via greenhouse-gas

emissions, has been identified as a significant contributor to this problem (Barth

and Boriboonsomsin, 2008, 2009).

6
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1.2 The Need for Autonomous Vehicles

Autonomous vehicles are vehicles which can move “without the active control or

monitoring of a human operator” (Nevada State Legislature, 2013) using a combi-

nation of active and passive environmental sensors, digital maps and databases

about the geography in which they operate, and robotic control systems. A crucial,

long-term benefit to be realized by autonomous vehicles is the significant reduction

in the number of vehicles operating on the roads. Most personal vehicles sit idle

most of the day, resulting in a fleet utilization percentage around 4% (Chesbrough,

2010). Even the most basic estimates suggest that there are sixteen to twenty times as

many vehicles in existence as are actually needed, but even a conservative estimate

is still three times too many vehicles (Spieser et al. (2014) in Meyer and Beiker, 2014,

in press).

Enabling vehicles to intelligently reposition themselves for other purposes could

have a variety of positive effects. From a transportation perspective, it would

reduce the vast amounts of land dedicated to surface parking, reduce the need

for parking structures, end congestion, and perhaps most importantly, reduce the

need for dead mileage, endless circling for a convenient parking space (Shoup

et al., 2005) and backhauls, return trips by a driver without passengers or cargo

(McKinnon and Edwards, 2010). It would also allow alternative, environmentally

friendly engine fuels not as feasible in consumer markets (electric and hydrogen) to

replace gasoline and diesel fuels in fleets operated by new, autonomous mobility-

on-demand services (Riley, 1994). Another long-term benefit would be a reduction

in accidents due to human error, perhaps by as much as an order of magnitude

(Maddox, 2012). The autonomous vehicle has been called an idea that will upend

7



www.manaraa.com

transportation, and this thesis proposes methods and techniques in support of this

emerging technology.

1.3 The State Of The Autonomous Vehicle

Science-fiction writer William Gibson has said, “The future is already here. It’s just

not very evenly distributed” (Gibson, 1999). His comment is particularly applicable

to the case of autonomous vehicles.

To fully explain the significance of this research and to appreciate its place in

the unfinished puzzle that is autonomous vehicle technology, it is necessary to

first review available driver-assistance technologies. Currently in the automotive

industry, standard options such as electro-hydraulic “power” steering and brakes

are available for production vehicles. Almost all models have the option to be

equipped with cruise control, rear hazard alerts, anti-lock brakes, and electronic

stability/traction control, all of which begin to blur the line of control between

driver and vehicle (Leen and Heffernan, 2002). More advanced driver assistance and

enhancement systems are currently limited to luxury vehicles, and include adaptive

cruise control, lane departure warnings, forward collision warnings, side and rear

hazard cameras, automated lane changes, and parking assistance (IndustryARC,

2013). All of these advanced systems are dependent on ever more complex passive

and active sensors and algorithms and are slowly becoming available on more

mainstream vehicle models.

Nearly every large American, European, and Japanese automobile manufacturer

is pursuing an autonomous vehicle research project at this time (Knight, 2013). Un-

8
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der development are capabilities that will facilitate semi-autonomous and fully au-

tonomous vehicles. Some near-term capabilities targeted toward semi-autonomous

driving by production vehicles are the abilities to car-follow (longitudinal and

lateral control) and drive fully autonomously on highway stretches for a short

period of time (General Motors, 2013; Mercedes-Benz USA, 2013). Beyond that lie

the research projects pursuing comprehensive autonomous driving, featuring a

multitude of sensors and dedicated computing resources. These projects are not

geared toward production models yet, with their trunks full of computer servers

or their $70,000 roof-mounted LiDAR units, in the case of Google’s effort (Silberg

and Wallace, 2012). However, if the past is any predictor of the future, sensors and

computers will shrink and drop in cost to the point where they are implemented at

the fleet level.

A related effort currently underway is what has been termed the connected

vehicle. The connected vehicle refers to the effort to improve the safety, mobility,

and environmental impact of vehicles through vehicle-to-vehicle and vehicle-to-

infrastructure communications (U.S. DoT RITA ITS Joint Program Office, 2014a).

The safety aspect will be achieved by allowing nearby vehicles to report conditions

to each other. The mobility and environmental impact aspects will be achieved

through “big data” aggregation and reporting, helping commuters and transporta-

tion personnel make better use of the finite road resource. One particular way the

mobility and environmental impact goals of connected vehicles will be achieved

is through the concept of cooperative adaptive cruise control, where a group of

vehicles with similar routes on a roadway will match their velocities and form a
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flotilla, both increasing the upper limit of vehicle density on roads and achieving

higher fuel economy through aerodynamic effects (Shladover, 1991).

It is natural to envision that autonomous vehicles will also be connected ve-

hicles because the goals of both efforts overlap. Additionally, connected vehicle

technology will complement the capabilities of autonomous vehicle technology

and mitigate some of its weaknesses, specifically, the limited sensing range of au-

tonomous vehicles. For the purposes of this thesis, an autonomous vehicle will be

assumed to also be a connected vehicle, able to communicate with various vehicle

information resources.

We are some decades away from the end goal of fewer vehicles on the road,

most of which will operate autonomously at much higher utilization rates. Prior to

that will be a period of transition where increasing numbers of fully autonomous

and semi-autonomous vehicles (specifically, those with adaptive or cooperative

adaptive cruise control) capable of sensing traffic congestion, have the capacity to

make small adjustments that would incrementally work against the symptoms of

congestion. The physical platform required for sensing those conditions is quite

modest, namely, a device for detecting axial movement (i.e. accelerometer) and a

devices for identifying the location of a vehicle (i.e. GPS receiver). In fact, everything

required to sense the relevant conditions, process the information, and advise the

driver can be found in a modern smart phone. This opens the door to providing

more intelligent, real-time decision support to drivers and cars smarter, right now,

while we wait for the future to arrive.

10
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1.4 Personal Motivations

The automobile and the Interstate Highway System have had significant impacts on

my life. My grandfather was the first truck driver hired at Potashnick Construction

Company in Sikeston, Missouri. He spent much of his career driving low-boy, flat-

bed trucks transporting heavy equipment for large construction projects (including

dozens of Interstates and the Ohio Turnpike) throughout the United States from the

1950s through 1970s. My father, while a high school and college student, worked as

a surveyor’s assistant during the summer on Western Kentucky Parkway survey

crews.

Growing up, I lived in suburban South St. Louis County. My father worked in

downtown St. Louis. To avoid the morning and afternoon rush hours, he kept a

7:00 a.m.–3:00 p.m. workday. Throughout my childhood it was clear this was why

we kept the household schedule we did. It was the first major but indirect effect

that urban freeway congestion had on my life.

At the same time, our summer vacations were all based around Interstate road

trips, commonly Florida and elsewhere in the South, Kentucky, Kansas, and Col-

orado, camping along the way. I developed a taste for the open road. While in

college at the University of Missouri–Columbia in the late 1980s and early 1990s,

I would return to St. Louis for the occasional weekend home. While driving east-

bound on U.S. Highway 40 through St. Charles County on Friday afternoons, trip

after trip I would see westbound traffic backed up from the MO-94 exit for miles,

across the Daniel Boone Bridge, through Chesterfield and West St. Louis County,

miles and miles of stop-and-go traffic. I resolved not to move to an area after college

where I would have to commute like that.
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I continued making road trips as a young adult: Florida and the South, multiple

times; Route 66; Arizona, California, and Utah. And, memorably, New England into

Canada, where I had no idea what the signs telling drivers to keep two chevrons

between vehicles meant while driving through Toronto. Similarly impressive was

the adrenaline surge of driving into Los Angeles, pacing seasoned commuters right

up to the moment traffic came to a complete stop.

It was on one of these road trips that I thought “What if cars could drive

themselves?” That thought experiment provided mental fodder for many miles

and years to come: sensors; vehicle-to-vehicle communication; the possibility for

intersection-scheduling algorithms; mobility-on-demand, parcel, and shipping

services; routing databases and the commercial interests that would exert influence

over them; the ability to hack vehicles, for good or ill; the value of open systems;

the chance to end congestion.

Some of this science fiction has come to pass, through the DARPA Grand Chal-

lenges, the work of Brad Templeton, Sebastian Thrun and Stanford, Google, and

many others around the world. Yet the bulk of the work toward fully autonomous

vehicles still lies ahead, and that was a major factor in my decision to pursue a

Master’s degree in Transportation Engineering.

1.5 Organization of this Thesis

The remainder of this thesis is organized as follows. First, a review of the literature

will discuss the nature and impact of urban traffic congestion; the availability of

driver assistance systems; and the creation of an intelligent driver feedback system.
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Second, a discussion of the methods used to develop the intelligent driver feedback

system, including traffic modeling and machine learning, is presented. Third, the

results of traffic modeling and machine learning are presented and analyzed. Finally,

conclusions are drawn and opportunities for extending the work are described.
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Chapter 2

Literature Review

The following literature review is organized into three major sections relevant to

this thesis research: 1) Congestion, 2) Driver Assistance Feedback Systems, and 3)

Creating a Feedback Heuristic.

2.1 Congestion

One of the biggest problems autonomous vehicle technology could help mitigate is

the problem of congestion. The phenomenon of congestion on urban freeway sys-

tems is familiar to drivers, chronic around the world (Downs, 2004; Elkatsha, 2013),

and a major focus of study: between 2003 and 2012, 6.85% of all articles cataloged in

the Transportation Research Board’s Transportation Research Integrated Database

(TRID) are tagged with the keyword “congestion” (Transportation Research Board,

2014). Congestion is commonly characterized as a breakdown in traffic flow, flow

being the number of vehicles passing a given point during a specific period of time.
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Flow breakdown occurs after a capacity threshold has been exceeded and can occur

anywhere along sections of highway where the influences of fixed bottlenecks and

traffic stream dynamics combine to precipitate capacity changes (Öǧüt and Banks,

2005). Capacity changes occur when traffic flow increases beyond road capacity

or road capacity decreases below traffic flow. These changes can be attributed to

bottlenecks (lane unavailability due to accident, interchanges, etc.); increases in

traffic flow beyond capacity; or sometimes from transient disturbances, such as

individual driver behavior, that the system is unable to absorb. When the capacity

changes cross a non-deterministic threshold, congestion will result (Öǧüt and Banks,

2005).

The onset of congestion may be broadly described as follows: the traffic stream

degrades from free flow, where vehicles have few interactions (individual vehicles’

accelerations and decelerations do not affect other vehicles); through synchronized

flow, where vehicles interact but maintain homogeneous velocities and are able

to absorb perturbations; to congestion. Symptoms of congestion are expressed as

flow reduction and velocity shockwaves propagating against the flow of traffic

(upstream) from the disturbance (Cassidy and Bertini, 1999; Wilson, 2008; Orosz

et al., 2009; Yeon et al., 2009). At the level of the individual driver, congestion

is characterized as either prolonged cycles of speed changes: stop-and-go traffic

(also referred to as slow-and-go) or, in the worst case, complete traffic paralysis.

Congestion which cannot be traced to a bottleneck is often referred to as a self-

organized or “phantom” jam and occurs when the critical threshold of vehicle

density is exceeded (Sugiyamal et al., 2008). Jerath and Brennan (2012) show both

that the traffic density (vehicles per unit distance) at which congestion criticality
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is reached is higher in a fleet of adaptive cruise control (ACC) equipped vehicles

and that adding non-ACC vehicles to the fleet, where humans are responsible for

longitudinal control (acceleration and deceleration), increases the likelihood of a

phantom jam. One may therefore conclude that driver reaction time and subsequent

overreaction to a braking stimulus is a key contributing factor to triggering a

phantom jam (Zielke et al., 2008). The speed of individual cars varies widely within

congested conditions, but as a whole, traffic moves at a rate substantially lower than

at maximum flow (6%, Hall and Agyemang-Duah, 1991), (10%, Cassidy and Bertini,

1999), (20%, Treiber et al., 2000). Additionally, a statistical analysis of four months

of empirical data revealed that the U.S. Department of Transportation Highway

Capacity Manual (2011) overestimated flow within flow breakdown conditions

and at leaving such conditions (Yeon et al., 2009). It is worth considering whether

drivers have a more difficult time adapting to flow breakdown conditions than is

generally recognized (Levinson et al., 2004), and if feedback can improve driver

performance and therefore overall conditions.

2.1.1 Impacts of Congestion

The magnitude of traffic congestion is enormous and growing. A study of five

years of data from California freeways shows drivers spending 20% of their time in

congestion (Varaiya, 2005). The INRIX Gridlock Index of the 10 largest cities in the

U.S. for October 2012 reported trips at 17.6% longer than necessary (INRIX, 2012).

Gibbens and Saatci (2008) evaluated 247 weekdays in 2003 from the M25 roadway

in London and showed that the median delay experienced by commuters is 30%

of the median hours traveled. The Texas Transportation Institute has reported on
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the growing problem of congestion over the past 30 years. Commuters now waste

approximately 20% of their commute in congested traffic (Schrank et al., 2012). The

American Community Survey #15 from the U. S. Census Bureau (2011) reported

76% of workers (105.5 million people) in the United States driving alone on their

daily commute. Traffic congestion is therefore a significant cost in the United States

to individual drivers ($818 and 38 hours average delay annually) and society as a

whole ($121 billion and 5.5 billion hours delay annually) (Schrank et al., 2012, 2011

figures).

All drivers experience higher stress and aggression in high-congestion situations

than low-congestion situations (Hennessy and Wiesenthal, 1999). However, the

effects of stress are inconsistent and vary from driver to driver. As a whole, a driver’s

susceptibility to congestion related stress has been expressed in the literature using

an impedance metaphor (Koslowsky et al., 1995; Novaco and Gonzalez, 2009;

Amichai-Hamburger, 2009). Individuals appear to have different impedance levels

with respect to commuting in general and congestion in particular. For those

who are susceptible, however, the different effects make for a very unpleasant

list: physical problems include elevated cardiac activity and stress hormone levels,

physical pain, especially back problems, digestive disorders, and even stroke and

cancer; psychological problems in the workplace include low performance, missed

work, and job turnover. Additionally, traffic congestion has been associated with

increased incidence of accidents resulting in death or serious injury (Wang et al.,

2013). Congestion therefore can be viewed as exacting a significant human cost.

The Texas Transportation Institute has published findings that fifty-six billion

pounds (25.4 million metric tons) of carbon dioxide were released in 2011 due to
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urban roadway transportation congestion (Schrank et al., 2012). Using the U.S.

Energy Information Administration figure of 1,519 million metric tons emitted by

the transportation sector in 2011, approximately 1.7% of all transportation-related

greenhouse gas emissions were due to congestion.

2.1.2 Solutions

Solutions to congestion are elusive, but the need for them is great (Schrank et al.,

2012). The traditional approach to solving roadway congestion has been to build

new roads and add more lanes to existing roads, yet it is a trivial economics exercise

to show that increasing supply increases demand. As a result, adding road capacity

does nothing to address congestion and actually worsens the situation; known

as the Lewis-Mogridge Position and Downs-Thomson or Pigou-Knight-Downs

Paradox (Lewis, 1977; Mogridge, 1990; Arnott and Small, 1994). Newer, systemic

approaches based on implementable technology such as ramp metering, variable

speed limits, dynamic messaging systems, and congestion pricing are deployed in

many urban centers around the world, but are designed to address the macroscopic

performance of the system (Shibata and French, 1997; Chen et al., 1999). Even with

these measures, traffic systems are unable to quickly recover high-flow conditions

following a perturbance (Gibbens and Kelly, 2011).

At the leading edge of automobile technology are autonomous vehicle projects

by Audi, BMW, Daimler, Ford, GM, Google, Nissan, Toyota, Volvo, and others

that aim to reduce human driver fallibility (Knight, 2013), but general availability

and widespread adoption is many years away not only due to a patchwork of

regulatory frameworks (Kalra et al., 2009; Lassa, 2013) but also because the current
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cost of technology for a fully autonomous vehicle significantly exceeds the cost of

an average vehicle (Rebsamen et al., 2012; Litman, 2013). Additionally, autonomous

vehicles in a heterogeneous fleet will only be able to drive as efficiently as (though

more safely than) the human-controlled vehicles around them (Jerath and Brennan,

2012).

A related approach to solving congestion at the microscopic scale is the concept

of connected vehicles, that is, human-operated vehicles which can communicate

information about their state to nearby vehicles and roadside infrastructure (U.S.

DoT RITA ITS Joint Program Office, 2014a). Connected vehicles are expected to

increase driver awareness of their immediate surroundings, but the effect of that

awareness remains a topic of research by the US DOT RITA Connected Vehicle

Safety Pilot (U.S. DoT RITA ITS Joint Program Office, 2014b). Cooperative Adaptive

Cruise Control based on simulated connected vehicle technology has been shown

to counteract stop-and-go shockwaves in urban freeway traffic models, reducing

emissions, noise, and vehicle wear by decreasing the kinetic intensity of vehicles

(Ma et al., 2012). However, that particular computer model required a very high

percentage of adoption in order to realize overall improved flow and environmental

benefit (Ma et al., 2012). This requirement directly contradicts conclusions in other

research into the effects of Adaptive Cruise Control on congestion (Section 2.2.2),

indicating a need for further research. Regardless, most vehicles lack these embed-

ded systems, and aftermarket solutions do not exist due to their nature and risk of

liability (Kalra et al., 2009).

There appears to be a lack of practical solutions to address congestion at the

microscopic scale. This thesis proposes one solution for filling that gap. Though
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the mass-adoption of autonomous vehicles is not a feasible alternative at this time,

driver-assistance technologies, like the heuristic model developed later in this paper,

can serve as an evolutionary step toward that reality.

2.1.3 Congestion Shockwaves And Traffic Oscillations

A traffic shockwave is defined as the point of transition from one state of traffic flow

to another (Öǧüt and Banks, 2005). A vehicle on an urban highway may travel at

the speed limit in uncongested conditions (free flow), having little interaction with

surrounding vehicles (in particular, the vehicle directly ahead), until the vehicle

catches up to a slower vehicle. The position of the vehicle when it is obliged to

brake in order to maintain a safe following distance is the position of the traffic

shockwave. Shockwaves almost always travel upstream, passing from leading car

to following car (Cassidy and Bertini, 1999). This is easily demonstrated in that

a leading vehicle can force a following vehicle to brake, but a following vehicle

cannot force a leading vehicle to accelerate. Traffic oscillations are cyclical changes

in vehicle streams’ speed over time (Zielke et al., 2008) as vehicles react to passing

through shockwaves.

One of the tell-tale signs of congestion is stop-and-go traffic along sections of

roadway. The oscillation of vehicle speeds in stop-and-go traffic is a symptom of

string instability within a platoon of vehicles (Kesting and Treiber, 2008). Traffic

oscillations may be unavoidably linked to human driver behavior (Igarashi et al.,

2001; Kesting et al., 2008a; Wilson, 2008; Orosz et al., 2009), for example, anticipation

and overreaction (Yeo and Skabardonis, 2009) or aggressiveness and timidity (Laval

and Leclercq, 2010).
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Zheng et al. (2011) define an oscillation as deceleration and subsequent accelera-

tion. Zielke et al. (2008) define a traffic oscillation more formally by citing cyclical

traffic speed, congested conditions, and upstream propagation. Once in an oscil-

lation pattern, a driver is then obliged to brake and accelerate cyclically until her

destination is reached or flow recovers. The repetition of braking and accelerating

are mutually canceling events, and therefore entirely wasteful.

Additionally, the performance characteristics of the vehicle’s internal combus-

tion engine must be taken into account; tailpipe emissions are greatly increased

during high acceleration (Coelho, 2005; Servin et al., 2006; Coelho et al., 2009). Barth

and Boriboonsomsin (2008) examine congestion and its carbon footprint and recom-

mend macroscopic traffic-smoothing techniques through variable speed limits and

intelligent speed adaptation, incurring a 7.0-12.0% (typical) to 45.0% (ideal) reduc-

tion in carbon-dioxide emissions. An empirical study of 90 drivers “concluded that

a modest saving in fuel can be achieved by maintaining a steady pace and leaving

substantial headway” (Jones and Appleby, 1978, p. 540). Similarly, Evans (1979)

and Barkenbus (2010) recommend anticipating conditions ahead and minimizing

braking and acceleration to reduce fuel consumption.

These recommendations foreshadow the concept of a minimally consumptive

(fuel, brake pad, etc.) driving behavior currently called “eco-driving”. Eco-driving

training at Mercedes-Benz was found to result in a 15.0% savings based only on “ac-

curate information and feedback” (van der Voort, 1997). The International Transport

Forum concluded that eco-driving could achieve 10.0% fuel savings (International

Transport Forum and International Energy Agency, 2007). In another study (Frey

et al., 2003), short-term events (specifically high acceleration) were found to con-
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tribute significantly to overall emissions and the authors advise addressing factors

that lead to their occurrence.

In order to approximate desirable driving behaviors numerically, a mathematical

solution could be beneficial. O’Keefe et al. (2007) define kinetic intensity (p. 5) as

the ratio of characteristic acceleration (a measure of a cycle’s acceleration and grade

intensity, p. 4) to the square of aerodynamic speed (p. 4). A vehicle will produce

a higher kinetic intensity value during hard acceleration and deceleration actions,

though this value will decrease as the vehicle’s speed increases. Smooth driving

with gentle acceleration and deceleration will produce a lower kinetic intensity.

Kinetic intensity is therefore a quantitative measure of eco-driving behaviors which

will later be used to gauge individual driving actions and overall trip impact.

2.1.4 Mathematical Solubility

Colombo and Groli (2004) use calculus of variations (Gelfand and Fomin, 2000) to

prove the existence of an average traffic density that will minimize oscillations in

the classic Lighthill-Whitham-Richards (Lighthill and Whitham, 1955; Richards,

1956) and related macroscopic traffic flow models, resulting in more fluent traffic.

This is accomplished, in part, by selecting a Lipschitz function that minimizes “the

(weighted) total variation of the car speed” (Colombo and Groli, 2004, p. 701).

Briefly, a Lipschitz function is constrained in how fast its value can change. While

that mathematical construct will not be explored here, it establishes that fluent traffic

is dependent on achieving an average traffic density, which in turn is dependent on

minimizing the total variation of vehicle speeds. This point will be revisited later in

the thesis.
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2.2 Driver Assistance and Feedback Systems

Having established that a particular set of general driving behaviors can mitigate

traffic congestion, the question becomes one of determining if there are actions

drivers can take at specific times to mitigate congestion and how to motivate the

driver to behave in that manner. Driver-assistance systems such as dynamic mes-

saging signs, congestion maps, and personal routing devices provide valuable

information to individual drivers that may affect their trip planning but do not

generally contribute to helping them become better drivers. Currently, several

aftermarket products exist that provide drivers with additional dashboard-style

information calculated from data obtained through the vehicle’s On-Board Diagnos-

tics (OBD-II) port. ScanGauge and UltraGauge are dedicated hardware components

that include function-specific displays reporting data from the engine computer,

including engine maintenance codes, to the driver (ScanGauge, 2013; UltraGauge,

2014). Being firmware-based solutions, their feature set and analysis capability is

limited. Other approaches use a driver’s smart phone as the compute and display

platform. Automatic, OBD Mileage, DrivingStyles OBD-II Behavior, and others take

a hybrid approach, connecting via the Bluetooth wireless standard to an adapter

connected to the OBD-II port to provide feedback about rough driving behaviors

(strong acceleration, speeding, hard braking), summarize and quantify these events

to motivate more environmentally conscious driving behaviors, tracks trips and

gas mileage, initiate crash alerts, interpret engine maintenance codes, and provide

directions to where the car is parked (Automatic, 2013; Universitat Politècnica de

València and Grupo de Redes de Computadores, 2014; Findra Studio, 2014; Ishida

R&D, 2013).
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These products calculate and report values of importance to eco-drivers such

as fuel consumption (instantaneous miles per gallon). While a knowledgeable

driver is able to consciously choose to adopt an eco-driving style, many drivers are

unaware of eco-driving techniques, need external reinforcement to maintain those

behaviors, or would welcome assistance, particularly during stressful, congested

traffic situations.

According to the definitive study by Zielke et al. (2008) upstream propagation

is an integral component of oscillating traffic. The effects of a drivers’ actions in

congested traffic are propagated from leading to following (upstream) vehicles.

These actions can be characterized as having a positive or negative effect on traffic

flow. Having established that maximizing traffic flow is dependent on minimizing

the variation of velocities (Section 2.1.4), smooth driving behaviors, including eco-

driving behaviors and the velocity adjustments recommended by a smart phone

application that could be developed from this thesis, can be said to have a positive

effect on traffic flow. As such, assisting drivers to change their driving styles and

providing “accurate and frequent” (van der Voort, 1997, p. 32) feedback to maintain

the new behaviors over time can have immediate and widespread positive economic

and environmental impacts for any driver in any vehicle (Seligman, 1978; van der

Voort, 1997; van der Voort et al., 2001; Barkenbus, 2010). However, as these are

optional behavioral changes, the percentage of drivers adopting these behaviors is

likely to remain small. It then remains to be seen if the actions of a small percentage

of drivers can have an overall positive impact on the fleet.
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2.2.1 Safety

Zheng et al. (2010) reviews three years of loop detector and crash data for a segment

of Interstate highway north of Portland, Oregon. Analysis of their data indicates

that the crash occurrence probability increases by 8.4% per 5-mile-per-hour increase

in the standard deviation of the fleet speed distribution during congested traffic

conditions. Zhang et al. (2011) finds that drivers in stop-and-go traffic can react to

relative speed stimulus from as much as the third car ahead and that drivers are

more aware of speed than space differences. Bauer et al. (2009) describes Variable

Message Sign systems in Germany and show that speed harmonization leads to

a 10-30% drop in accident rates. Riener and Ferscha (2009) model vehicles with

time-to-collision feedback to the driver and find that throughput on the simulated

road increases and trip time decreases across a range of vehicle densities. Islam

et al. (2012) studies loop detector data from a stretch of roadway over a period of

sixteen months in Edmonton, Canada and find that higher speeds, higher standard

deviation of speeds, higher coefficient of variation of speeds, and average occupancy

are all indicators of the likelihood of a crash. Vadde et al. (2012) models a stretch

of US Highway 90 in San Antonio, Texas where an Active Traffic Management

system is proposed and find that speed harmonization results in 14% fewer crashes.

Harmonizing vehicles’ velocities so that all vehicles along a stretch of roadway

are traveling at approximately the same speed as a means to reduce the likelihood

and severity of freeway accidents and improve flow and capacity is an established

method with a proven track record.
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2.2.2 Adaptive Cruise Control

Advanced driver assistance systems (adaptive cruise control, lane departure warn-

ing, etc.) are generally only found in luxury vehicles and serve as a driver conve-

nience rather than driver enhancement (Nirschl (2007) in Smith and Salvendy, 2007).

Research has shown that appropriately calibrated Adaptive Cruise Control can

reduce traffic congestion on a roadway even when only a small percentage of the

fleet is so equipped (Zhou and Peng, 2005; Kesting et al., 2007b, 2008b, 2010; Orosz

et al., 2010). Adaptive Cruise Control improves traffic conditions by delaying the

onset of congestion and reducing the maximum queue length behind a bottleneck,

which allows the congestion to dissipate earlier (Kesting et al., 2007b). Yet the fleet

penetration of Adaptive Cruise Control worldwide is projected to reach only 5.2

million vehicles by 2015 (Global Industry Analysts, Inc., 2012), a small fraction of

the one billion vehicles currently on the road (Sousanis, 2011). Additionally, in

evaluating the tendency of drivers to lose attention and situational awareness when

using Cruise Control and Adaptive Cruise Control, Vollrath et al. (2011) observed

that “it would make more sense to develop warning and intervention systems

which support the driver” (Parasuraman and Riley, 1997; Young and Stanton, 2002;

Vollrath et al., 2011). The heuristic proposed in this thesis will initially be imple-

mented as if to be deployed as a driver-assistance tool via a smart-phone application

but could easily extended to be embedded in an Adaptive Cruise Control system.

As vehicles become more fully autonomous, the driver distraction issue noted by

Vollrath et al. (2011) should become less of an issue.
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2.2.3 Smart Phones

A smart phone is generally defined as a mobile computer capable of running third-

party applications and featuring a variety of embedded sensors and antennae,

allowing for communication on modern wireless networks (Lane et al., 2010). The

adoption of smart phones has outpaced any previous consumer technology (De-

Gusta, 2012; McGrath, 2013). In the United States, 56% of the adult population owns

a smart phone as of 2013 and is even higher among two-thirds of the workforce

(ages 18-29, 66%; ages 30-49, 59%) (Smith, 2012). Smart phones represented 77%

of the growth in mobile devices worldwide in 2013 (Cisco, 2014). As such, avail-

ability of a smart phone as a platform for the development of an intelligent driver

feedback application designed to utilize the heuristic developed here is seen as an

opportunity more than an obstacle.

Smart Phone Applications

The current generation of smart phones include a variety of physical sensors. Smart

phone manufacturers and third-party application-developer communities have

written many applications that utilize these sensors. There has been a general

recognition of opportunities for constructive use of smart phone applications in

transportation. Other papers describe research applying smart phones’ accelerome-

ters and GPS receivers to accurately classify driving behavior (Johnson and Trivedi,

2011), detecting accidents (White et al., 2011), detecting drunk driving (Dai et al.,

2010), providing driver feedback regarding a variety of conditions (Fazeen et al.,

2012), providing warning of upcoming stop signs (Tucker et al., 2012), and collecting

data about road conditions (Bhoraskar et al., 2012).
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A handful of smart phone eco-driving applications have been developed for the

general public. Hunter Research and Technology’s greenMeter (Hunter Research &

Technology, 2014) uses the iPhone accelerometer to gather data and infer eco-driving

behaviors, providing a variety of options for data display similar to ScanGauge and

UltraGauge (Section 2.2). No conclusion can be reached about its efficacy based

on the application’s reviews, though the web site estimates that the application

has allowed drivers to save two million gallons of gasoline in the first year of its

availability. However, the application’s web site does not document the collection

of these data. The application is available for US$5.99 (April, 2014) on the U.S.

Apple iTunes Store, but has not been updated since August, 2009. DriveGain

(DriveGain Limited, 2011) provides similar functionality and outputs and purports

to allow drivers to save US$210 per year on fuel. Unlike greenMeter, it explicitly

uses the iPhone’s GPS receiver. The application is available in free (with optional in-

application purchases) or US$6.99 versions (April, 2014). No equivalent non-OBD-II

smart phone applications were found for the Google Android platform. Other

smart phone platforms were not surveyed due to their low market penetration. A

smart phone application based on the intelligent feedback heuristic developed in

this thesis would differ from existing applications in the following ways:

1. It will detect a particular set of traffic conditions and recommend a particular
behavior, rather than provide general feedback on general driving behaviors;

2. It is meant only for use in metropolitan and urban freeway settings, rather
than in all traffic situations;

3. While it will continuously monitor traffic conditions and driver response, it
will not provide continuous display or feedback, only providing decision
support as necessary;
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4. When it provides feedback to the driver, it will be able to sense whether or
not its recommendation was followed;

5. It will be able to detect the duration of time between providing feedback to
the driver and the vehicle braking, allowing it to calculate its own accuracy,
whether or not the driver followed the feedback;

6. If it detects that its feedback was followed, it will be able to estimate savings
incurred by the driver and by following vehicles.

In a traffic context, the most important information a smart phone can give a

driver includes the following:

• Conditions ahead (requires external information; cf. Google Maps, Apple
Maps, Waze, etc.);

• Characterization of traffic conditions (Bhoraskar et al., 2012);

• Accident detection (White et al., 2011);

• Indicators of erratic driving (Dai et al., 2010; Johnson and Trivedi, 2011; Fazeen
et al., 2012);

• Indication of speed oscillation (independent detection).

Zhang (1999) found traffic oscillation frequencies to average around one minute,

which is a reasonable time window for a smart phone application to track data

for processing. Chen et al. (2012) report oscillation periods approaching a lower

bound in the range of 2-3 minutes. Kesting et al. (2008a) in Uhrmacher and Weyns

(2009) list the period of stop-and-go waves as being on the order of ten minutes,

while Laval and Leclercq (2010) report others’ findings of longer periods of up to

15 minutes. If indeed such traffic phenomenon are on the order of 10-15 minute

intervals, then the impact of a smart phone decision support device on driver

behavior may be limited. Further research is clearly required to investigate this

issue.
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Sensing and Locating

The 3G Partnership Project specification 25.305 lists standardized methods for a

smart phone to determine its position, including Global Positioning Systems (GPS)

(3rd Generation Partnership Project, 2013). The GPS receiver chip is among the

highest power-consuming environmental sensors on a mobile device (Mohan et al.,

2008; Ben Abdesslem et al., 2009; Dai et al., 2010; Lu et al., 2010; Tucker et al.,

2012). Conversely, the accelerometer is its lowest power-consuming environmental

sensor (Ben Abdesslem et al., 2009), making it practical for continuous, background

use. By combining continuous monitoring of the battery-friendly accelerometer

with strategic sampling of the power-hungry GPS receiver, a continuous location

can be approximated within the error range of the Global Positioning System

(Ben Abdesslem et al., 2009), maximizing location data availability while minimizing

power consumption. The Jigsaw continuous sensing engine for smart phones also

seeks to maximize location accuracy while minimizing power consumption (Lu

et al., 2010). It is not unrealistic to propose implementing a smart phone application

intended to be active during a commute that depends on these two device sensors,

assuming that sufficient coverage by navigation satellites exists.

Human Factors

Driver distraction from electronic devices (among many other in-vehicle items and

activities) has been shown to be an undesirable condition. A responsible driver-

assistance smart phone application will minimize its complexity and interface in

order not to create excessive risk (Young and Regan, 2007). Visual driver feedback

in a dashboard context is most often correctly interpreted when presented in a
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toggle (on/off or yes/no) format, though the careful incorporation of incremental-

format information provides significantly more information without exposing the

interface to too much risk of misinterpretation (Graving et al., 2010). Unfortunately,

a second study of providing driving fuel-efficiency feedback found that detailed

advice was required to significantly modify driving habits (van der Voort et al.,

2001). Given the issues involved, the design of any driver-assistance smart phone

application requires a thoughtful consideration of such human factors and a well-

planned implementation, in order to provide clear, accurate, contextual, and low-

risk information (van der Voort, 1997), perhaps using audio rather than visual

cues.

2.3 Creating A Feedback Heuristic

“Essentially, all models are wrong, but some are useful.”

G E O R G E B O X A N D N O R M A N D R A P E R ,

E M P I R I C A L M O D E L - B U I L D I N G A N D R E S P O N S E

S U R F A C E S , P. 4 2 4

Traffic models are mathematical descriptions and computer simulations that

attempt to accurately describe the behavior of traffic based on a set of equations

and rules. Accuracy, in this sense, is the level of agreement with empirical data

sets of macroscopic traffic measurements. As such, being able to make predictions

about traffic behavior which may later be observed is an important goal. Given

their importance, traffic models have been and continue to be an area of active (and

contentious) research. Reviews of the state of the art in traffic modeling can be
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found in Chowdhury et al. (2000), Helbing (2001), Maerivoet (2005); Maerivoet and

De Moor (2005), Orosz et al. (2010), and Schadschneider et al. (2011).

Traffic models can be classified as either macroscopic or microscopic. Macro-

scopic models aim to predict the state of traffic as a whole over time via parameters

such as flow, density, and speed. Microscopic models aim to mimic the behavior of

individual vehicles in traffic and are considered valid if they produce macroscopic

results that match empirical measurements (Maerivoet and De Moor, 2005). The

remainder of this section will focus on microscopic traffic modeling approaches,

given that the purpose of this work is to create a machine learning algorithm which

can provide driver feedback at the individual level. Additionally, there is general

agreement that only a microscopic model is capable of simulating flow breakdown,

which is central to this work (Duncan and Littlejohn, 1997; Knospe et al., 2004;

Treiber and Kesting, 2010).

There are three primary families of deterministic microscopic traffic models

(Kesting et al., 2008a). The first family includes those models, such as Follow-the-

Leader and Optimal Velocity, which are continuous (that is, can be assigned any

real number value) in all variables (time, distance, velocity, and acceleration). The

second family comprises the many Traffic Cellular Automata models, including

Nagel-Schreckenberg and its derivatives, which are discrete (that is, are restricted to

a set of values) in all variables. The third family is a hybrid of the first two, discrete

in time but continuous in the rest, based on the Coupled-Map Lattice. There are

also a variety of other approaches to modeling traffic, including stochastic models,

for which references to comprehensive reviews can be found at the beginning of

the section. Given the goal of the proposed research, to isolate the conditions that
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will maximize the effect of a change in the behavior of a vehicle, and the need to

compare its results with empirical data, it was determined that a model from the

first family was the most appropriate (Treiber et al., 2000).

2.3.1 Intelligent Driver Model

The model selected to generate simulated data to train the heuristic at the heart

of this thesis is a recent microscopic model which has withstood scrutiny in the

literature, the Intelligent Driver Model (IDM) (Treiber et al., 2000, 2006b; Kesting

et al., 2008a; Kesting and Treiber, 2008). It is one member of the Follow-the-Leader,

Car-Following class of models with the following advantages:

1. It behaves as if accident-free because of the dependence on the
relative velocity;

2. For similar reasons and because of metastability, it shows the self-
organized characteristic traffic constants demanded by Kerner and
Konhaüser, hysteresis [delay] effects, and complex [traffic] states;

3. All model parameters have a reasonable interpretation, are known
to be relevant, are empirically measurable, and have the expected
order of magnitude;

4. The fundamental diagram and the stability properties of the model
can be easily (and separately) calibrated to empirical data;

5. It allows for a fast numerical simulation; and

An equivalent macroscopic version of the model is known, which is not
the case for most other microscopic traffic models (Treiber et al., 2000, p.
1806).

Brockfeld et al. (2003, 2004, 2005) examine the calibration and validation of a

variety of microscopic models and found the Intelligent Driver Model to be as

accurate as other, more complicated models (those with a larger number of param-

eters). It must be noted, however, that all models had a residual error rate of at
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least 15.5% compared to the empirical data used. In general, the simplest model is

recommended, as more complex models were not found to be qualitatively better

(Brockfeld et al., 2004), but it has been observed that any model is “appropriate for

describing the average dynamic behavior” of traffic (Brockfeld et al., 2005). Hoogen-

doorn and Hoogendoorn (2010) confirm the findings of Brockfeld et al. (2004) and

show that the IDM is statistically better than the (admittedly simple) Gazis, Herman,

and Rothery model (Gazis et al., 1961). An open-source reference implementation

of the IDM exists at the web site www.traffic-simulation.de, maintained by Martin

Treiber (Treiber and Kesting, 2010).

Mathematical Description of the Intelligent Driver Model

The IDM attempts to address shortcomings of prior car-following models, which

suffered from a variety of undesirable or unrealistic features, including symmetric

acceleration and deceleration, lack of equilibrium values, unrealistically large or

small acceleration and deceleration values, or lack of macroscopic features seen

in empirical data. The IDM improves upon prior models by using an equation

of acceleration which is dominated by the vehicle’s desired velocity when the

intra-vehicle gap is large and by the same gap when that gap is small. In turn, the

vehicle seeks a desired gap which is a combination of minimum gap at maximum

(jam) density, minimum time headway (amount of time to cover the distance) to

the leading vehicle, and a term which increases as the vehicle’s speed increases.

The parameters of each vehicle are continuous in time and space and based on a

car-following equation of acceleration. For a full theoretical discussion of the IDM,

including how it improves upon specific car-following models, please see Treiber
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Table 2.1: Model Parameters of the Intelligent Driver Model

Model Parameters of the IDM
(Treiber and Helbing, 1999; Treiber et al., 2000)

IDM Parameter Symbol Typical value

Time t R ≥ 0
Vehicle index α Z ≥ 0
Vehicle length lα 1/ρmax ≈ 5m
Vehicle position xα(t) R ≥ 0
Vehicle velocity vα(t) R ≥ 0
Velocity difference ∆vα(t) R
Vehicle gap sα(t) R ≥ 0
Desired vehicle gap s∗α R ≥ 0
Desired velocity v0 120 km

h
Safe time headway T 1.6s
Acceleration v̇α(t) R
Maximum acceleration a 0.73 m

s2

Desired deceleration b 1.67 m
s2

Acceleration exponent δ 1− 5
Jam distance s0 2m

et al. (2000). In the interests of simplicity, the same notation used by Intelligent

Driver Model articles in the literature will be used throughout this thesis, as detailed

in Table 2.1.

Per the same sources, the equations defining the Intelligent Driver Model are as

follows. The standard equation of change of position is:

xα (t + ∆t) = xα (t) + vα (t)∆t +
1
2

v̇ (t) (∆t)2 (2.1)

The standard equations of change of velocity are:

vα (t + ∆t) = vα (t) + aα (t)∆t (2.2)
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Figure 2.1: Desired gap as a function of the vehicle’s velocity and the difference in
velocity between the vehicle and its leading vehicle.

∆vα (t) = vα (t)− vα−1 (t) (2.3)

A prerequisite for the equation of acceleration is the desired gap s∗:

s∗ (vα (t) , ∆vα (t)) = sα
0 + vTα +

vα (t)∆vα (t)
2
√

aαbα
(2.4)

Figure 2.1 shows the values for s∗ across the ranges that can be taken by v and ∆v

based on the desired velocity v0 = 120 km
h = 33.3m

s .

Finally, the equation of acceleration (denoted by v̇) is:

v̇α (t) = aα

[
1−

(
vα (t)

vα
0

)δ

−
(

s∗ (vα (t) , ∆vα (t))
sα (t)

)2
]

(2.5)

Figure 2.2 shows the values for v̇ across the ranges that can be taken by v and

∆v based on the desired velocity v0 = 120 km
h = 33.3m

s and an actual gap sα =
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Figure 2.2: Acceleration as a function of the vehicle’s velocity and the differences in
velocity and actual gap between the vehicle and its leading vehicle.

180m. Note that deceleration can exceed the desired deceleration b if the vehicle is

suddenly presented with unrealistic (dangerous) differences in velocity.

2.3.2 Discrete Wavelet Transformations

Wavelet transforms have become a major tool in the sciences since their introduction

in 1982 (Sifuzzaman et al., 2009; Zheng et al., 2011). Wavelet transforms have a

variety of applications in transportation, including incident detection, work zone

traffic management, and flow forecasting (Adeli and Karim, 2005; Adeli and Jiang,

2009). See Jensen and Cour-Harbo (2001) for a brief introduction to the mathematics

and a longer discussion of the implementation of wavelet transforms. In addition

to their straightforward computation, wavelet transforms have the advantage over
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the Fourier transforms of being able to store local information about a signal, useful

in identifying isolated features. In the context of this work, wavelet transforms:

• Can extract features (information) from a signal, in this case accelerometer
readings;

• Can analyze noisy vehicle trajectory data, making microscopic analysis possi-
ble (Zheng et al., 2011);

• Can detect acceleration changes which can be fed to an external heuristic to
recognize congestion and oscillation waves;

• Operate on a time resolution suitable for both effective detection of traffic
conditions and deployment on a smart phone.

2.3.3 Machine Learning Algorithms

This work attempts to provide intelligent feedback to the driver or vehicle control

system based on the current state of the vehicle’s acceleration curve. The intelligent

feedback must be based on some prior knowledge of traffic behavior and outcomes.

It therefore requires a computational approach which will allow it to predict a

favorable result in the future if it provides feedback to the driver based on what is

currently known. It is impossible, of course, to know all possible traffic states, and

so a generalization of conditions and outcomes is sought.

Machine Learning (ML) algorithms are those designed to learn from past ex-

periences in order to correctly react to new experiences or to correctly group new

experiences (Mitchell, 1997). Machine learning algorithms commonly work by

abstracting input data relationships in space (Cluster analyses, Support Vector

Machines, etc.) or in networks (Artificial Neural Networks, Decision Trees/Forests,

Bayesian Networks, etc.), broadly speaking, through mathematical and statistical
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processes of classification and regression (Steinwart and Christmann, 2008). All

machine learning algorithms require some kind of feedback about their decisions.

In Supervised Learning and related approaches, the algorithms are trained by being

given some number of classified training data initially on which to base future deci-

sions. In Unsupervised or Reinforcement Learning, the algorithm seeks to either

structure the data or to improve the feedback it receives (reinforcement) about its

decisions (Mitchell, 1997).

In this thesis, actual individual drivers will not be used to pilot/test the intelli-

gent feedback mechanism that is developed. Rather, many different traffic scenarios

will be identified through systematic simulation. The events obtained from the

simulations (i.e. traffic conditions and driver response) will then be classified as

positive or negative based on their effect on traffic flow. These simulations will then

be used to train a supervised machine learning algorithm. Specifically, the Support

Vector Machine technique is used as it is particularly well-suited to the task.

Support Vector Machines

A Support Vector Machine (SVM) is a type of classifying machine learning algorithm,

that is, it attempts to correctly classify new inputs based on a set of training data

whose classes are also known. This works by seeking a binary classification of the

current state of the vehicle: provide no feedback, or provide feedback to the driver

or vehicle control system to take action. Unary, binary, and multi-class classification

is one of the main applications of Support Vector Machine techniques (Steinwart

and Christmann, 2008).
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(a) Two classes

(b) Three classes

Figure 2.3: Example Support Vector Machines
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A Support Vector Machine functions by calculating a hyperplane (an n-dimensional

plane) that spatially separates the two classes (in the case of binary classification) of

training data inputs (Figure 2.3). The hyperplane is called the decision boundary,

and the support vector machine attempts to maximize the width of the margin

to either side of the boundary as a criterion of finding a near-optimal solution.

Each input is a vector, the number of elements of which determines the lower

bound of the dimensionality of the machine calculation. In a so-called hard margin

SVM, the hyperplane must perfectly (with no error) separate the two classes. This,

however, can lead to problems of solvability and overfitting, overfitting being the

finding of a solution which is too specific to the training data set used, mainly

by forcing the solution calculation into a high number of dimensions. The soft

margin SVM allows for some degree of misclassification in order that the solution

is not overfitted to the training data set. It becomes the task of the support vector

machine to minimize misclassification while maximizing the width of the margin.

According to Abe (2010), Support Vector Machines exhibit the following advantages

and disadvantages compared to multilayer neural networks:

Advantages

1. Maximization of generalization ability. [. . . . Because] a support
vector machine is trained to maximize the margin, the generaliza-
tion ability does not deteriorate very much, even [when training
data are scarce and linearly separable].

2. No local minima. [. . . . Because] a support vector machine is for-
mulated as a quadratic programming problem, there is a global
optimum solution.

3. Wide range of applications. [. . . .] In support vector machines, gen-
eralization ability is controlled by changing a kernel, its parameter,
and the margin parameter. [. . . .]
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4. Robustness to outliers. [. . . .] In support vector machines the mar-
gin parameter C controls the misclassification error. If a large value
is set to C, misclassification is suppressed, and if a small value is
set, training data that are away from the gathered data are allowed
to be misclassified. Thus by properly setting a value to C, we can
suppress outliers.

Disadvantages

1. Extension to multiclass problems. Unlike multilayer neural net-
work classifiers, support vector machines use direct decision func-
tions. Thus an extension to multiclass problems is not straightfor-
ward, and there are several formulations. [. . . .]

2. Long training time. Because training of a support vector machine
is done by solving the associated dual problem, the number of
variables is equal to the number of training data. Thus for a large
number of training data, solving the dual problem becomes difficult
from both the memory size and the training time [. . . ].

3. Selection of parameters. In a support vector machine, we need to
select an appropriate kernel and its parameters, and then we need
to set the value to the margin parameter C. To select the optimal
parameters to a given problem is called model selection. [. . . .] In
support vector machines, model selection is done by estimating the
generalization ability through repeatedly training support vector
machines. [. . . .]

Abe, 2010, pp. 58-59.

This work avoids the first disadvantage entirely in that it seeks binary classifica-

tion only. The second and third disadvantages can be overcome by the application

of additional computation time, which has an ever-decreasing cost.

2.3.4 Implications for the Present Work

While elimination of congestion remains the ultimate goal, the problem can be

addressed in multiple ways. Systemic approaches such as congestion pricing,
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ramp metering, and variable speed limits are not the focus of this work. Rather, a

microscopic, driver-assistance approach will be discussed. The goal of this thesis is

to describe a method to smooth, and ultimately harmonize, vehicle speed overall

through individual vehicle perturbations. This will have the net effect of introducing

destructive interference to the stop-and-go velocity wave, decreasing the amplitude

of velocity oscillations in congested traffic, and leading to flow recovery.

In the physical sense, at the level of a participating vehicle, the vehicle will not

accelerate quite as much as it may have in the absence of feedback, while not having

to decelerate as much in turn. This creates a positive feedback loop for following

vehicles and the velocity shockwave is not amplified, or, ideally, is dampened as

it propagates upstream. Therefore, there is both a driver and societal benefit to be

realized.

The proposed heuristic is devised as a machine learning algorithm trained to

make constructive recommendations to the driver based on acceleration data from

the smart phone’s accelerometer while in urban freeway traffic. The motivation

behind the development of a smart phone application is to be able to advise the

individual driver when to cease acceleration in anticipation of the next braking

action in the cycle. In this way, the driver will inject information into the system that

will dampen oscillations. In effect, this attempts voluntary, single-driver Intelligent

Speed Adaptation, a method a managing vehicle speeds on roadways (Servin

et al., 2006). The intelligent feedback application will appeal to operational and

strategic behaviors of the driver-agent model (Kesting et al., 2008a) in (Uhrmacher

and Weyns, 2009): limited estimation capability, limited attention span, desired

acceleration and deceleration, smooth driving, and so on. Drivers are also thought to
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be most receptive to modifying behaviors when fuel savings can be shown (Gonder

et al., 2012). Intelligent feedback will help drivers refrain from rapid acceleration

and hard braking at one extreme to moderate acceleration (3 mphs Gonder et al.,

2012) and light braking to eliminating acceleration and deceleration completely

(Gonder et al., 2012). Addressing these problems will hopefully minimize the

kinetic intensity of the commute and reduce environmental impact. Deploying the

heuristic in a smart phone application would therefore meet the requirements set

out in van der Voort (1997, p. 73):

It has been concluded that for a device to significantly improve fuel
economy, it should:

• provide the driver with clear, accurate, and non-contradictory in-
formation

• take into account the context a vehicle is in

• place no requirements on the driver which are too high to combine
with the actual driving task

• work within an urban environment.

An additional requirement is that the device needs to be cost-effective.

Gonder et al. (2012) describe how “speed/acceleration data [. . . ] from the

GPS/accelerometer on a non-connected smart phone can provide the feedback basis

for the most critical fuel efficiency behaviors” (p. 459). Van der Voort (1997) also

recommend the accelerometer approach for its ability to detect and measure hard

braking, in itself undesirable driving behavior and indicative of prior acceleration to

too high a speed. A smart phone application incorporating the proposed intelligent

feedback would have to alert the driver appropriately and display the effect of the

driver’s action, based on whether the driver acted on the feedback.
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In lieu of experimenting on actual drivers, the proposed machine learning

algorithm will be trained and evaluated based upon simulations of individual

vehicles using a microscopic traffic model. This model will collect acceleration data

from a sensor vehicle, change the acceleration behavior of the sensor vehicle, and

determine, both through calculation of kinetic intensity and macroscopic measures

of the simulated traffic, whether its recommendations improve the commute for the

sensor vehicle individually and the system as a whole, respectively.
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Chapter 3

Methods

This section of the thesis details the various processes used to implement an instance

of the Intelligent Driver Model (Treiber et al., 2000; Kesting et al., 2008a). This

simulation routine is implemented for high performance computing and capable of

assessing the behavior of individual vehicles. Also, the wavelet transforms used to

refine the simulation data and ultimately provide information to the support vector

machine will be described.

3.1 Implementation Of The Intelligent Driver Model

It is desirable to generate machine learning algorithm training data that covers a

wide variety of traffic conditions, but simulating these conditions may require a

significant amount of time and computing resources. The software tools used to

simulate traffic and generate test events were chosen with an eye toward High

Performance Computing. Specifically, the equations at the center of the simulator,
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which come from the works of Treiber, Hennecke, Helbing, and Kesting (Treiber

et al., 2000; Kesting et al., 2008a) on the Intelligent Driver Model (Section 2.3.1), are

implemented in the C programming language with OpenMP compiler directives for

parallel processing. The GNU C Compiler gcc version 4.8.2 (Free Software Founda-

tion, Inc., 2014) is used, which supports the OpenMP version 3.1 specification (Free

Software Foundation, Inc., 2013). The choice of a parallel programming architecture

to simulate vehicle movement and generate test events is solely to increase the

speed at which it executes. In fact, the OpenMP compiler directives can be disabled

at compile-time, resulting in a correct, serial-processing program.

3.1.1 Simulator Architecture

The architecture of the traffic simulator is as follows. The primary transportation

infrastructure is of a one-lane road segment of a user-specified length, containing

information about the road segment itself (designation, lane number, length, up-

stream road segment reference, downstream road segment reference, and detector

references), virtual detectors collecting macroscopic traffic characteristics (density,

flow, and velocity) and an array of data structures containing information about

vehicles on the road segment (current position, velocity, acceleration, and kinetic

intensity). As this simulation is designed to run in a high-performance-computing

parallel-processing environment, the array is statically allocated in memory, rather

than implemented using object-oriented programming, as in the source code avail-

able from Treiber (2011) (Section 2.3.1). The array is sized to hold information about

the number of vehicles that could be present at jam density on the specified length
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of road, plus a small margin of error in case the road segment is pushed beyond

jam density conditions.

As the array is statically allocated, information about the vehicles does not

change position within the array as might be expected in a dynamic-list data struc-

ture. Instead, when a vehicle is added as the upstream-most vehicle, it remains

at the assigned array index until it becomes the downstream-most vehicle, moves

beyond the length of the road segment during a single time step, and is moved to

the downstream road segment. Possible initial conditions are illustrated pictograph-

ically:

3 1 0 - - - - -
0 1 2 3 4 5 6 7

0 1 2

Upstream-most vehicle array index
Downstream-most vehicle array index

Vehicle Number

Array Index
Vehicle Position (Road length is 10 units)

Intermediate steps are skipped as vehicles advance along the road segment

uniformly. The lead (downstream-most) vehicle eventually reaches the end of the

road segment:

10 8 7 - - - - -
0 1 2 3 4 5 6 7

0 1 2

Upstream-most vehicle array index
Downstream-most vehicle array index

Array Index

Vehicle Number

Vehicle Position (Road length is 10 units)

The lead vehicle now moves to a downstream road segment and is removed

from the current road segment:
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- 9 8 - - - - -
0 1 2 3 4 5 6 7

1 2

Upstream-most vehicle array index
Downstream-most vehicle array index

Array Index

Vehicle Number

Vehicle Position (Road length is 10 units)

A new vehicle might enter the road segment at its beginning and is added at the

next available higher array index:

- 9 8 0 - - - -
0 1 2 3 4 5 6 7

1 2 3

Upstream-most vehicle array index
Downstream-most vehicle array index

Array Index

Vehicle Number

Vehicle Position (Road length is 10 units)

New vehicles enter the ring road in two ways. The first is through an approx-

imation of a ramp merge. The second is by the vehicle passing from the end of

the upstream road segment to the beginning of the current road segment. In the

case of the ring road implemented in this thesis, this means that a vehicle moves

off the end of the road to the beginning of the same road; the ring road is its own

upstream and downstream. Each time a vehicle enters the road by either method, it

is assigned a new number. Vehicle numbers only increment as implemented in this

simulator. Eventually, the downstream-most and upstream-most vehicle numbers

will be greater than the length of the array, as vehicles are added to the end and

removed from the beginning. As such, modulo arithmetic with the array length as

the divisor is used to keep information about vehicles within the array bounds. It is

therefore inevitable to have vehicles in a road segment arranged as follows:
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3 2 - - - 6 5 4
0 1 2 3 4 5 6 7

16 17 13 14 15

Upstream-most vehicle array index
Downstream-most vehicle array index

Array Index

Vehicle Number

Vehicle Position (Road length is 10 units)

This static memory architecture allows the system to maximize CPU cycles spent

on simulation computation, rather than memory management, as would be the case

in a dynamic memory allocation architecture.

In light of the parallel programming environment employed here, it is important

to note that two sets of the physical characteristics (acceleration, velocity, position,

and kinetic intensity) of vehicles are stored in the vehicle data structure. This is so

that present characteristics of a vehicle may be read for the calculations of another

(i.e. following) vehicle’s future characteristics even while new characteristics for the

vehicle are being written, eliminating a significant data dependency from the simu-

lation. Read-and-write behavior is alternated by a binary modulo operation against

the (integer) simulation clock (Table 3.1). While this approach doubles the memory

requirements for each vehicle, those additional memory requirements are on the

same scale as the memory requirements that would be necessary for implementing

linked list or object reference pointers in a dynamic memory allocation architecture,

so the overall penalty is small.

Finally, while the simulation leverages the OpenMP library for parallel pro-

cessing, OpenMP provides only pseudo-parallel processing by means of process

threads, rather than true Single-Instruction-Multiple-Data (SIMD) parallel process-

ing provided by true high performance computing systems or General Purpose
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Table 3.1: Controlling read and write operations to memory in a parallel program-
ming environment.

Clock 0 1 2

Pass 0 1 0

Parameter Set 0 1 0 1 0 1
Allowed Action Read Write Write Read Read Write

Position 0 1 2 1 2 3
Velocity 6 7 7 7 7 6

Acceleration 0 1 -1 1 -1 0
Kinetic Intensity 1 2 2 2 2 3

Graphics Processing Units (GPGPUs). This work primarily leverages OpenMP’s

capacity for loop unrolling, the ability to process multiple loop iterations in parallel.

3.2 Simulation

This experiment simulates single-lane ring roads of varying lengths beginning at 19

vehicles per kilometer and increasing to approximately 62 vehicles per kilometer, at

which threshold the simulation terminates (Figure 3.1). All vehicles are modeled

to be homogeneous, sharing the same physical characteristics and behaviors. The

fundamental activity of the simulator at each time step is to calculate the Intelligent

Driver Model equations of the desired gap, acceleration, velocity, and position

for each vehicle on the road and update them accordingly. Again, the purpose of

the simulations is to generate data on traffic conditions and driver response that

will become a corpus for training the machine learning algorithm. The flowchart

in Figure 3.1 shows the general computational structure of the simulator that

implements the Intelligent Driver Model. The sole purpose of the simulator is
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Figure 3.1: High-level Flowchart of the Proposed IDM Simulation Project.
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Figure 3.2: Display of the IDM simulator at clock step 0 for a 10km ring road. The
light gray circle is the road; the medium gray patches represent the sensing area
of macroscopic traffic detectors. The red dots represent the location of vehicles on
the road. The large dot is the sensor vehicle. Fundamental macroscopic diagrams
are inside the road; the acceleration and velocity of the sensor vehicle and kinetic
intensity for all vehicles on the road appear in the graphs to the left of the road.
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Table 3.2: Parameters of the IDM Simulator

Parameters of the IDM Simulator

IDM Parameter Typical value

Vehicle length 5m
Desired velocity 120 km

h = 33.3m
s

Safe time headway 1.6s
Maximum acceleration 0.73 m

s2

Desired deceleration 1.67 m
s2

Acceleration exponent 4
Jam distance 2m
Time step 0.2s
Merge interval 10s
Velocity drop threshold 24 km

h
Sensor vehicle data history length 102.4s(512 time steps)

to operate vehicles on a roadway, look for the future occurrence of a velocity

drop by the sensor vehicle, then conduct an experiment which compares traffic

measurements between two different scenarios to generate a test event.

3.2.1 Virtual Macroscopic Traffic Detectors

The simulator creates one virtual macroscopic traffic detector collecting density,

flow, and velocity values for each kilometer of road length. The simulator updates

these macroscopic traffic parameters at each time increment over the simulated

period based on the location and speed of all vehicles (the fleet) on the road. The

simulator is configured to calculate density at each sensor based on the number of

vehicles within 50 meters to either side of the detector; calculates flow based on the

number of vehicles that have passed the detector in the previous 30 seconds; and
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calculates velocity based on the average space-mean-speed of the vehicles within

50 meters to either side of the detector. However, the simulator could be easily

modified to accommodate any other parameter settings. Visual representations of

the state of the road use all three parameters to create the fundamental diagrams of

macroscopic traffic models, while the simulator uses only flow as part of the output

data.

3.2.2 Vehicle Merging

The simulator is designed to attempt to merge an additional vehicle onto the road

at position 0 (zero) at a user-defined interval (ten seconds in this application) of

simulation time using a deterministic, ramp-meter approach. If there is sufficient

gap between the vehicles immediately downstream and upstream of position 0, a

new vehicle is added at the average of the down- and upstream vehicles’ position,

with the velocity and acceleration of the downstream vehicle. While artificial, it

approximates realistic merging behavior by bisecting the available gap and match-

ing the speed and acceleration of the leading vehicle. If there is an insufficient gap

between the vehicles immediately downstream and upstream of position 0, the

simulator will continue to attempt to add a vehicle each subsequent time step until

it succeeds.

3.2.3 Sensor Vehicle

At the beginning of each run, the simulator designates one active vehicle as the

sensor vehicle, recording its acceleration and velocity at each time step of the
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simulation. Additionally, the simulator calculates, sums, and records the kinetic

intensity (Section 2.1.3) of the fleet with the sensor vehicle data. In all other respects,

the sensor vehicle is identical to all other vehicles on the road.

3.2.4 Master Road Simulation

As the nature of this work is to address stop-and-go traffic by recognizing patterns

in the acceleration curve of a participating vehicle, we are interested in future veloc-

ity drops by the sensor vehicle. At 0.2 second intervals throughout the simulation,

an ancillary 102.4-second look-ahead simulation is conducted to help detect any

upcoming significant decline (i.e. below 20% of the desired velocity) in the sensor

vehicle’s velocity. Therefore, at each time step of the simulation, the simulator

replicates the existing road and conditions—its detectors, its vehicles, and their

state—to conduct a look-ahead. The simulator then runs this ancillary system

forward in time, up to the duration of the sensor vehicle’s data recorder (512 time

steps or 102.4 seconds at 0.2 seconds per time step as implemented in this experi-

ment). If the simulator does not detect a velocity drop by the sensor vehicle in the

look-ahead system, then the original road simulation resumes and the look-ahead

system is discarded. If a velocity drop is predicted, the master simulation is paused

and duplicated to create test and control simulations to assess the ramifications of

suppressed acceleration (test) and unmodified behavior (control) responses.
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Figure 3.3: Display of the IDM simulator at the beginning of a test run. The blue
and red vehicles are the same vehicles on the same road, not a two-lane road. The
test sensor vehicle (large blue dot) has been instructed to maintain velocity.
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Figure 3.4: Note how the control sensor vehicle has accelerated and decelerated
repeatedly, while the test sensor vehicle has been able to maintain its speed for over
a minute, braking only slightly before exiting the congestion.
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Figure 3.5: The short, 8.8-second delay in acceleration in this figure resulted in a
2.4% improvement in flow on the test road compared to the control road.

Figure 3.6: A 20.8-second delay in acceleration in this figure resulted in a 2.3%
improvement in flow on the test road compared to the control road.
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Figure 3.7: In breakdown conditions, acceleration suppression can go on for a very
long time, 105.4 seconds in this test, resulting in a 2.1% improvement in flow.
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Figure 3.8: Plot of Percent Road Occupancy versus Kinetic Intensity.
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3.2.5 Testing Modified Behavior of the Sensor Vehicle

When the simulator detects an upcoming velocity drop, it creates two copies of

the simulated system at that point in time, including its detectors, its vehicles, and

their state: one copy is used as a test and the other as a control (Figure 3.3). A flag

in the sensor vehicle on the test system which prohibits the sensor vehicle from

accelerating until the IDM equation of acceleration becomes negative, that is, the

sensor vehicle is required to maintain its velocity until it must brake. This is the sole

change in state and behavior between the two, otherwise identical, roads and fleets.

An explanation of the chosen behavior modification is appropriate at this point.

Assume that two vehicles in an urban highway setting are interacting; that is,

the accelerating and braking (longitudinal) actions of the leading vehicle have an

immediate impact on the following vehicle, inducing it to accelerate or requiring

it to brake, respectively. If the following vehicle was to detect that the leading

vehicle was accelerating with respect to the following vehicle (the gap between

the vehicles is increasing), the following vehicle would normally be induced to

accelerate in order to reach its desired velocity. If, however, the following vehicle

chose or was advised not to accelerate, the gap between the vehicles would continue

to grow until both vehicles reached the same velocity at some later time. Conversely,

if the following vehicle was to detect that the leading vehicle was braking with

respect to the following vehicle (the gap between the vehicles is decreasing), the

following vehicle would normally be required to brake in order to avoid a collision.

If, however, the following vehicle chose or was advised not to brake, the gap

between the vehicles would continue to shrink until the vehicles collided. It is the

opinion of this author that it is unsafe to pursue a heuristic that might tell a driver
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not to brake. The modified behavior of the sensor vehicle will be limited to not

accelerating when it might otherwise be induced to accelerate.

After the test and control roads have been created and the behavior of the sensor

vehicle has been modified, the simulator then runs the test and control systems

forward in time (without adding new vehicles) for five minutes, calculating micro-

scopic (kinetic intensity) and macroscopic (flow) traffic parameters as always. At

the end of five minutes of simulated time, the simulator calculates the differences

in total kinetic intensity and flow between the test and control systems. The sim-

ulator records these data, along with a wavelet transform of the acceleration data

from the sensor vehicle leading up to the test. In this way, the simulator is able to

record the effect for the entire fleet, positive or negative, of the sensor vehicle taking

a particular action (maintaining velocity until obliged to brake), given an initial

condition—the shape of the acceleration curve—prior to taking the action.

Another unknown in the search for accurate driver feedback is with regard to

how much acceleration data history leading up to a suppressed acceleration action

is required to generate an accurate prediction. Therefore, the simulator records

multiple versions of each test event, so that later steps may compare feedback

prediction accuracy and determine the best acceleration-data history length.

Each event from the test/control simulations produces two inputs for the train-

ing the support vector machine. The first input is a wavelet transform of the

acceleration data leading up to the beginning of each test run. The second input

is the result from the test simulation, how much flow was increased or decreased

by the changed behavior of the sensor vehicle on the test system compared to the

control system. The amount by which kinetic intensity increased or decreased is
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also produced by the simulator as an input (Figure 3.8), but with vanishing few

exceptions (shown in red below y = 0.0) it is always less (shown in blue above

y = 0.0) on the test road than the control road, and is not used in the analysis.

3.3 Wavelet Transforms

Raw acceleration data are undesirable for sending to a machine learning algorithm.

Certainly, in a real-world situation, accelerometer data will contain some degree of

noise: vehicle vibration, road surface irregularities, motion of the sensor within the

vehicle, and so on. Therefore, a discrete, fast wavelet transform signal-processing

algorithm is applied to the acceleration data to reveal the component frequencies.

These isolated frequencies serve as much stronger stimuli for a machine learning

algorithm attempting multi-resolution analysis.

3.3.1 GNU Scientific Library

There are many variations in the literature on the original wavelet transform (Jensen

and Cour-Harbo, 2001). This work implements the wavelet transforms in the well-

established and open-source GNU Scientific Library (Free Software Foundation,

Inc., 2013). The GNU Scientific Library implements the B-spline, Daubechies, and

Haar wavelet families. In particular, the GNU Scientific Library implements one-

and two-dimensional wavelet transforms based on the biorthogonal B-spline order

(i, j) = (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (2, 8), (3, 1), (3, 3), (3, 5), (3, 7), (3, 9) (3.1)
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and Daubechies maximum phase

k
2

, k = 4, 6, 8, 10, 12, 14, 16, 18, 20 (3.2)

wavelet families. The simulator sends the acceleration data from each test event

through all available wavelet families and members, twenty in all, in order to enable

accuracy values from later machine-learning-algorithm training to determine which

wavelet transform is best suited for the task of providing intelligent driver feedback.

A third consideration is the amount of computation efficiency required in a

proposed smart phone application to process the data and provide feedback to the

driver. Simple wavelet transform algorithms require sample sizes that are powers

of two (Jensen and Cour-Harbo, 2001). The simulation preserves 512 acceleration

data points leading up to each test run. This value is selected as a balance between

the discrete wavelet transform requirement of data lengths that are powers of two

versus the value being the lower bound of dimensionality for the support vector

machine. Thus, the allowed wavelet transforms sizes are 512, 256, 128, 64, 32, 16,

8, 4, 2, and 1. Since the simulations proceed at a time increment of 0.2 seconds,

this translates to 102.4, 51.2, 25.6, 12.8, 6.4, 3.2, 1.6, 0.8, 0.4, and 0.2 seconds of

acceleration history, respectively. Because driver reaction time must be taken into

consideration, sample sizes of 16 and fewer clock steps are not considered.

In a real-world implementation, time is continuous and the accelerometer in a

smart phone can be sampled at a variety of time scales, dependent on the sensor

hardware in the device, but within the range 10Hz-100Hz (Apple, Inc., 2013; Corona

Labs Inc., 2014; STMicroelectronics, 2014a,b). However, elapsed time between sam-
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ples cannot be guaranteed, so some combination of oversampling and interpolation

may be necessary prior to performing the wavelet transform.

Each 2n, n = 5, 6, 7, 8, 9 sample size subset of data from simulation test events is

run through each GNU Scientific Library discrete wavelet transform and the results

saved, 100 variations derived from each test event generated by the simulator. Each

of these variations will be used as input to the machine learning algorithm and the

ability of the support vector machine (SVM) to make an accurate prediction will be

used to determine both the acceleration data sample size needed and the discrete

wavelet transform most capable of producing correct feedback to the driver.

The different transformations of the acceleration data, the binary positive or

negative event classification, and the magnitude (weight) of that classification are

used as input to the weighted data variant of the support vector machine LIBSVM

(Chang and Lin, 2011).

3.4 Machine Learning

By the end of its execution, the simulator as configured in this thesis will have

generated several thousand test events, each containing a wavelet transform of the

sensor vehicle’s acceleration data and the effect on macroscopic traffic flow over the

time of the sensor vehicle suppressing its own acceleration temporarily. The simu-

lated events will then be used as input for an artificial intelligence machine learning

algorithm to attempt to classify good versus bad results from the simulation.
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3.4.1 LIBSVM

This thesis makes use of a support vector machine from the well-established (Ben-

Hur and Weston, 2010) and open-source LIBSVM (Chang and Lin, 2011). LIBSVM

supports one-class and multi-class classification and regression, with a variety of

kernels (linear, polynomial, radial basis function, and sigmoid). LIBSVM also imple-

ments solution cross-validation which allows one to determine the best parameters

to use with the radial basis function kernel, which is recommended by the authors

as a good general-purpose kernel:

K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0 (3.3)

As a support vector machine itself has tunable parameters C and γ, it is necessary

to search the parameter space methodically to find the parameters that will produce

the best accuracy. The authors of LIBSVM document such a method in a paper

accompanying the software library (Hsu et al., 2010). That method is as follows, in

brief (Hsu et al., 2010, p. 3):

• Scale data;

• Use the Radial Basis Function (RBF) kernel;

• Find the best combination of values for C and γ;

• Use the best C and γ for the entire training set.

LIBSVM comes in its standard form and also in several variants. One variant sup-

ports weighted vectors. Each simulated event can be weighted based on the positive

or negative effect it had on traffic flow. As noted in Section 3.3.1, this thesis uses

the weighted variant of LIBSVM. LIBSVM itself does not have a parallel-processing
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architecture and could be used in a smart phone application or embedded control

system implementing the intelligent driver feedback heuristic.

3.5 Signal Processing

The output of each wavelet transform contains all coefficients necessary to recon-

struct the original acceleration data. A wavelet transform contains information

about the features of a signal, and not the signal itself, in its coefficients. It may be

the case that the full wavelet transform contains too much detail for the support

vector machine to be able to maximize its solution accuracy. Coefficients with

smaller values correspond to less important features. Therefore an arbitrary amount

of “noise” is removed from the wavelet transform by setting one or more of the

smallest coefficients to zero by removing it from the data file. The Support Vector

Machine is retrained using the significant features only and the accuracy compared

to that from the complete wavelet transform.
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Chapter 4

Results

This chapter reports on the performance of the traffic simulation, the wavelet

transforms, and the machine learning algorithm, and signal processing done in

this work. The results of all iterations of the support vector machine training are

explored and analyzed in detail.

4.1 Simulation

The events of multiple simulations recording data from different sensor vehicles on

the roadway are detailed in Table 4.1. The table includes:

1. The execution number (run),

2. The ring road length (circumference in kilometers),

3. Which vehicle in the traffic stream was sampled (sensor vehicle number),

4. How many events collected from the sensor vehicle were generated by each
run,
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Run
Road

Length
(km)

Sensor
Vehicle

Number

Test
Events

Total
Clock

Iterations

Real-time
Equivalent

(days)

Simulation
Duration
(hours)

# of
CPUs

1 10.0 0 5,902 41,097,466 95.1330 5.148 4
2 10.0 95 5,645 39,814,964 92.1643 6.413 8
3 10.0 150 5,810 40,111,9501 92.85171 - 4
4 10.0 111 5,859 40,258,950 93.1920 23.570 8
5 10.0 37 6,004 40,979,014 94.8588 8.630 4
6 10.0 48 5,563 39,568,9641 91.59481 - 4
7 10.0 6 6,147 41,466,511 95.9873 3.740 6
8 10.0 5 6,194 41,538,512 96.1540 4.253 5
9 10.0 2 6,155 41,499,512 96.0637 4.969 2

10 10.0 3 6,432 41,898,517 96.9873 7.671 3
11 10.0 7 6,248 41,594,011 96.2824 3.729 7
12 10.0 8 6,465 41,912,010 97.0185 3.771 8

Total - - 72,424 491,740,381 1138.29 71.894 -
1 estimated

Table 4.1: Results from Different IDM Simulations

5. How many 0.2 second clock iterations elapsed on the master, look-ahead, and
test roads combined,

6. The same amount expressed in decimal days, and

7. The particulars of the computational environment.

4.1.1 Explanation of Collected Data

Each test event consists of two items: first, an initial condition consisting of the

sensor vehicle’s (wavelet transformed) acceleration curve leading up to the modified

behavior and second, the increase or decrease in traffic flow between the test and

control roads over a five-minute period following the temporary change in behavior

of the sensor vehicle. (The increase or decrease in kinetic intensity of all vehicles on
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Table 4.2: Descriptive Statistics from All Twelve Simulation Runs

Data Property or Statistic Value Position

Count 72 424
Minimum percent change flow (%∆Q) −5.533 11
Maximum %∆Q 3.504 66
Mean %∆Q −0.084 59
Median %∆Q −0.066 78
Standard Deviation %∆Q 0.681 33
95th percentile %∆Q 0.998 70 68,802
96th percentile %∆Q 1.078 16 69,527
97th percentile %∆Q 1.182 44 70,251
98th percentile %∆Q 1.332 52 70,975
99th percentile %∆Q 1.580 95 71,699
99.9th percentile %∆Q 2.353 29 72,351
99.99th percentile %∆Q 3.040 55 72,416
99.999th percentile %∆Q 3.504 66 72,423

the road is also recorded, but not used; see Section 2.1.3 and Figure 3.8.) A positive

result is taken to be one in which traffic flow increased and a negative result is

taken to be one in which traffic flow did not change or decreased. In this way, it is

possible to use the shape of the acceleration curve as a determinant of providing

intelligent feedback to the driver in order to improve traffic flow.

In the simulation, test events are generated at each clock step when the sensor

vehicle has an upcoming velocity drop below 20% of its desired velocity (Figure 3.1).

Additionally, each event was recorded with five different lengths of wavelet trans-

formed acceleration data: 32, 64, 128, 256, and 512 data points; see Section 3.3.
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Figure 4.1: Effects of each test on traffic flow across the range of road occupancy
simulated.

4.1.2 General Characteristics of Collected Data

Table 4.2 provides descriptive statistics from events from all simulations. In par-

ticular, an event resulting in a 1.0% or better improvement in traffic flow on the

roadway occurs beginning at the 95th percentile and above. Figure 4.1 shows all

test events visually; a positive test event is represented by a blue dot above 0.0 on

the y axis; a negative test event is represented by a red dot below 0.0 on the y axis.

The ability of the sensor vehicle to affect flow is fairly uniform across all occupancy

levels.

Figure 4.2 displays the effect of all test events on traffic flow as a histogram,

rounded to the nearest tenth of a percent. The histogram suggests that it is slightly

easier to have a negative than positive effect on flow; in fact, 55% of test events

reflect a negative outcome (n = 39, 826).
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Figure 4.2: Effects of each test on traffic flow summarized as a histogram.
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Figure 4.3: Road occupancy as a function of elapsed simulation time.
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Figure 4.4: Duration of acceleration suppression as a function of road occupancy.

Figure 4.3 illustrates how the simulator is configured to add vehicles to the traffic

stream as occupancy increases. The simulator is set to attempt to add a vehicle

to the road every 10 seconds in this application (it supports any clock increment

greater than 0) and, as can be seen in the figure, is able to keep that pace throughout,

as confirmed by the linear trend.

Figure 4.4 displays the amount of time that the acceleration of the sensor vehicle

is suppressed (velocity maintained) prior to catching up with a velocity shockwave,

necessitating braking. Positive test events are shown in blue and negative test

events are shown in red (Section 4.1.1). The horizontal banding observed below 10

seconds is due to the time step used in the simulator, 0.2 seconds, as displayed on

the logarithmic scale used for the y axis. No pattern in occupancy or duration of

acceleration suppression can be visually identified in the figure. The most striking

visual feature is the de facto maximum duration of acceleration suppression between
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Figure 4.5: Test event effect on traffic flow as a function of the duration of accelera-
tion suppression.

20 and 30 seconds, but the most unusual visual feature is the existence of data points

above 102.4 seconds. This is because 102.4 seconds (512 data points) is the maximum

duration of the look-ahead when detecting a velocity drop. To have a duration of

acceleration suppression longer than 102.4 seconds means that the sensor vehicle

was able to completely absorb the downstream velocity shockwave. Unfortunately,

these events do not always have a positive effect on traffic flow, are rare enough to

be outliers, and are therefore not explored further in this thesis.

Figure 4.5 depicts a scatterplot of the duration of the acceleration suppression by

the sensor vehicle and the resulting effect on traffic flow. In this figure, the vertical

banding below 10 seconds is due to the time step used in the simulator, 0.2 seconds,

as displayed on the logarithmic scale used for the x axis. Similar features can be

observed here as in Figure 4.4, such as the drop in data points above 25 and 85

seconds.
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Figure 4.6: Histogram of Acceleration Suppression Duration.

Figure 4.6 shows a histogram of the duration of sensor vehicle acceleration

suppression drawn from test events having a 1% or better effect on traffic flow.

Most events have a duration of 20 seconds or less, though there is a long tail

extending beyond 200 seconds. This suggests that some upper bound of what

constitutes an actionable event could filter the positive events before going to the

support vector machine.

Figure 4.7 depicts a histogram of the test events where the sensor vehicle sup-

pressing its acceleration produced an improvement in traffic flow for the entire

road greater than 1%. The changes in traffic flow are rounded to the nearest 0.1%

in this figure. Most events have around a 1% to 1.5% effect, though a very few

substantial effects above 2% exist. The drop in the count at 1.0% is an effect of

rounding, because tests with an effect of 0.95%-1.0% are not in the set of positive

events.
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Figure 4.7: Histogram of event flows greater than one percent.

Finally, Figure 4.8 plots duration of acceleration suppression against traffic flow

effect. In this figure, the vertical banding below 10 seconds is due to the time step

used in the simulator, 0.2 seconds, as displayed on the logarithmic scale used for

the x axis. This figure is, in essence, the top portion of Figure 4.5 and shows only the

detail of test events with a positive effect on traffic flow in excess of 1%. Similar to

Figure 4.6, test events drop off somewhat above 20 seconds’ duration of acceleration

suppression.

At this point in the analysis it is not possible to isolate any range of occupancy

levels as being particularly sensitive to the behavior tested, namely, suspending

acceleration in anticipation of an upcoming velocity drop. Statistically, triggering

this behavior randomly would have a slightly higher likelihood of having a negative

effect on traffic flow on the roadway (55% to 45%). However, the experiment seeks
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Figure 4.8: Scatterplot of Positive Results vs. Suppression Duration.

to understand the initial conditions required to produce a positive result when

triggering the behavior.
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4.2 Wavelet Transform Performance

The experiment post-processed each length of acceleration curve using each of

twenty discrete wavelet transforms in the GNU Scientific Library and recorded the

transformed data along with the associated positive or negative effect on macro-

scopic traffic flow improvement. The relative performance of each wavelet trans-

form will be compared in the next section in the context of the ability of the support

vector machine to accurately classify new events based on its learning from simula-

tor events.

4.3 Support Vector Machine Calculation

The goal of this work is to find a local, if not global, maximum of classification

accuracy across four dimensions: one of five lengths of acceleration data samples;

one of twenty varieties of discrete wavelet transformation; and two parameters

required by the support vector machine—C, the penalty parameter of the error

term, and γ, a parameter of the radial basis function kernel (Section 3.4.1) (Chang

and Lin, 2011). At this point, the standalone support vector machine trainer in the

weighted variant of LIBSVM, svm-train, is used to calculate a hyperplane separating

positive results (increased traffic flow) from negative results (decreased traffic flow).

This work uses an iterative approach to find the best accuracy possible.
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4.3.1 Support Vector Machine Calculation: First Iteration

This iteration processes the events from simulator runs number 1 and 2 (Table 4.3)

using each of the five sample lengths and 20 discrete wavelet transforms for a

total of 100 possible support vector machines. The intent of this broad search is

to discard from further consideration poorly performing wavelet transform and

sample length combinations based on the classification accuracy of support vector

machines trained using those poor combinations.

Additionally, a Support Vector Machine using a Gaussian Radial Basis Function

kernel uses two adjustable parameters, C and γ. The LIBSVM cross-validating solu-

tion space search script easy.py spawns instances of svm-train, using values of C

over the range log2C = −5,−3, . . . , 15 and γ over the range log2γ = −15,−13, . . . , 3

for a total of 110 trials (Figure 4.9) per combination of sample length and wavelet

transform in order to determine parameter values that will produce the highest

classification accuracy (“best-in breed”). Svm-train uses 75% of the 11,547 events as

the training corpus (n = 8, 661), and the final 25% for the testing corpus (n = 2, 886;

Table 4.3).

The experiment did not calculate all 100 possible “best-in-breed” support vector

machines due to an interruption in power to the computers used. The experiment

was not restarted owing to the poor accuracy observed overall. The lack of variation

in accuracy between sample lengths and wavelet transform families and members

is surprising and requires further investigation. No firm conclusion about which

time window sample sizes or wavelet transforms work best can have a significant

impact on traffic flow can be inferred from these results.
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hhhhhhhhhhhhhhhhhhSample Length
DWT Family 32 64 128 256 512

B-spline 1,3 53.7929 54.0238 54.0584 54.1854 -
B-spline 1,5 53.6543 54.2085 54.1739 54.2663 -
B-spline 2,2 53.7582 53.5735 53.6659 53.8390 -
B-spline 2,4 53.7582 53.7120 53.6428 53.7236 -
B-spline 2,6 53.7120 53.7005 53.5966 53.8044 -
B-spline 2,8 53.7351 53.8621 53.6659 53.7467 -
B-spline 3,1 53.6890 53.6659 53.6774 53.6543 -
B-spline 3,3 53.7929 53.7351 53.6890 - -
B-spline 3,5 54.0122 53.7467 53.6543 - -
B-spline 3,7 53.3888 53.7120 53.6543 - -
B-spline 3,9 53.7813 53.6774 53.6197 - -
Daubechies 6 53.4349 53.7236 - - -
Daubechies 8 53.6543 53.7582 - - -
Daubechies 10 54.1162 53.7120 - - -
Daubechies 12 54.0122 53.7929 - - -
Daubechies 14 53.9199 53.7929 - - -
Daubechies 16 53.8044 53.9083 - - -
Daubechies 18 53.9083 - - - -
Daubechies 20 53.9083 - - - -
Haar 2 53.7813 - - - -

Table 4.3: Best percent accuracy predicting testing data across all values of C and γ.
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Figure 4.9 shows an example of results from LIBSVM using the data from simula-

tor runs 1 and 2. The figure displays topographic contours at fixed height intervals

of the result surface generated by invoking the Support Vector Machine calculation

with different values of C and γ. The surface height is the classification accuracy (%)

on the training corpus. LIBSVM’s easy.py script implements the following approach:

1. svm-scale to perform data scaling;

2. grid.py to iterate over the parameter space for C and γ, repeatedly calling
svm-train to actually generate a support vector machine;

3. svm-predict to calculate model accuracy against the testing corpus; and

4. gnuplot to visualize the results generated.

The figure generated by gnuplot is a contour plot showing the results within

the context of neighboring parameters. In the example, there are two local maxima

above 52.5%. It is possible to specify smaller parameter ranges and step sizes to

narrow the parameter search to the most promising areas.

4.3.2 Support Vector Machine Calculation: Second Iteration

Given the disappointing but nearly identical accuracy of all discrete wavelet trans-

form variations and different amounts of wavelet-transformed acceleration data,

this iteration focuses only on a Haar 2 wavelet transform of 32 acceleration data

points. However, this change is not to address the disappointing support vector ma-

chine classification accuracy. Instead, the experiment reevaluates what constitutes a

positive classification.

When the simulation generates a test event, it classifies the event based on

whether the test road’s macroscopic traffic flow measurement increases (class +1)
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Figure 4.9: Visual display of support vector machine accuracy over ranges of
parameters.

or decreases (class -1) compared to the control road. Any non-negative difference,

however small, is considered a positive result, and any negative difference is

considered a negative result. However, the goal of this work is to make a measurable

difference in congested traffic flow. Therefore, the second iteration biases results

so that only those that have at least a one percent improvement in flow on the test

road over the control road are classified positive. In fact, a statistical analysis of the

data used to train and test the support vector machine (n = 11, 547) shows a one

percent improvement of traffic flow occurring at the 88th percentile and above of

ranked events (Table 4.4).

As before, the easy.py script walks the solution space, but only against the

Haar 2 wavelet transform of the 32-sample acceleration data. Figure 4.10 shows

the results from LIBSVM using the data from simulator runs 1 and 2 biased to
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Table 4.4: Descriptive Statistics from Simulation Runs 1 and 2

Data Property or Statistic Value Position

Count 11 547
Minimum percent change flow (%∆Q) −5.533 11
Maximum %∆Q 3.221 85
Mean %∆Q −0.080 40
Median %∆Q −0.049 97
Standard Deviation %∆Q 0.938 46
88th percentile %∆Q 0.990 33 10,161
89th percentile %∆Q 1.035 11 10,276

classify only events with a 1% or higher effect on traffic flow into the +1 class.

The classification accuracy is very good across the entire support vector machine

parameter search space, in excess of 87%, and only dropping as the cost of the

error term C becomes quite large. The uniform performance remains unexpected,

however, requiring deeper exploration. Support vector machines are recalculated

with additional data from other simulator runs in an attempt to reveal why the

support vector machine produces nearly identical classification accuracies over

such a wide range of parameters.

4.3.3 Support Vector Machine Calculation: Third Iteration

The third iteration of SVM training includes data from all twelve simulator runs,

n = 72, 424 (Table 4.1). Simulator events are again biased so that only events with

a 1% or higher positive effect on traffic flow are classified as positive (Table 4.2).

LIBSVM easy.py cross-validated accuracy improves with the additional data to 95%

(Figure 4.11), but the unusually uniform accuracy remains.
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Figure 4.10: Visual display of support vector machine accuracy over ranges of
parameters using the 32-sample Haar 2 discrete wavelet transform.
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Figure 4.11: Results from LIBSVM using the data from all simulator runs biased to
classify only events with a 1% or higher effect on traffic flow into the +1 class.
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Classification Failures

The poor and nearly uniform classification accuracy results from the first iteration

of support vector machine calculations and nearly uniform classification accuracy

results across the parameter space from the second and third iterations invites skep-

ticism. Carefully evaluation of the svm-predict results reveals that the classification

of every result in the testing corpus was -1 for many discrete wavelet transform

types and across many parameter spaces. LIBSVM silently failed, in that it adopted a

majority-class classifier behavior, that is, classified all vectors into the -1 class. This

explains the calculated accuracy in many of the results, because the distribution

between classes -1 and +1 is 55% and 45%, respectively, in the first iteration, 88%

and 12% in the second iteration, and 95% and 5% in the third iteration. Therefore,

classifying all test data as -1 will guarantee accuracy equal to the percentage pop-

ulation of the -1 class. The majority-class classifier behavior is due to unbalanced

data (Ben-Hur and Weston, 2010).

To address this, the misclassification costs change according to this formula

(Ben-Hur and Weston, 2010):

Pos. examples so f t−margin constant
Neg. examples so f t−margin constant

=
Number o f neg. examples
Number o f pos. examples

(4.1)

or
C+

C−
=

n−
n+

=
10195
1352

≈ 7.54
1

(4.2)

Based on the relative frequency of classes in the simulation events used in the first

iteration, the training and testing corpora are biased so that only events improving
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traffic flow by 1% or greater are classified +1. A misclassification cost of 7.54 is used

for the +1 class for the remainder of the support vector machine calculations.

At this point, support vector machine calculation restarts with two important

modifications to the approach: classifying only the best events into the +1 training

and testing corpora, and adjusting the +1 class misclassification cost to address

unbalanced data.

4.3.4 Support Vector Machine Calculation: Fourth Iteration

Having reclassified events to prefer better outcomes, and having adjusted mis-

classification costs to address unbalanced data, all varieties of wavelet transform,

acceleration data time window, and support vector machine parameter are recalcu-

lated. The best accuracy support vector machine for each wavelet transform and

acceleration data time window appear in Table 4.5 and graphically in Figure 4.12.

Figure 4.12 is commonly known as a “heat map” where different shades along a gra-

dient of colors represent different numeric values. Each cell of the figure represents

the classification accuracy for the associated wavelet transform and acceleration

data history time window. Shortcomings of the 32-data point time window and B-

spline 1,3 and 1,5 and Haar 2 discrete wavelet transforms are immediately apparent.

The clearly superior results from the 512-data point time window also stand out.

Two observations can be drawn from these results. First, the shortest acceleration

data time windows (32-sample, 6.4-second corpora) perform the worst overall, and

the longest acceleration data time windows (512-sample, 102.4 second corpora)

perform the best overall. Second, two families of support vector machine perform

poorly overall (Haar 2 and B-spline 1,j). The fairly consistent performance of B-
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hhhhhhhhhhhhhhhhhhSample Length
DWT Family 32 64 128 256 512

B-spline 1,3 85.4816 83.8184 81.3583 82.2245 85.8281
B-spline 1,5 85.6202 83.1254 81.2543 82.2592 85.9667
B-spline 2,2 84.6500 86.4865 87.5953 88.4269 88.3576
B-spline 2,4 84.6154 86.0360 87.4220 88.4962 88.2190
B-spline 2,6 84.2689 86.5904 87.5606 88.3922 88.2190
B-spline 2,8 84.2342 85.9321 87.5260 88.4962 88.2536
B-spline 3,1 88.2536 86.4172 85.7588 85.7935 89.3624
B-spline 3,3 84.6847 86.4172 85.8628 85.5856 89.3971
B-spline 3,5 84.5807 86.6944 85.6549 85.6895 89.3624
B-spline 3,7 84.6500 86.5211 86.1400 85.8628 89.3624
B-spline 3,9 84.5461 86.6597 85.4816 85.6549 87.6299
Daubechies 6 85.1351 86.8330 86.4518 85.7588 86.7983
Daubechies 8 85.2044 86.5211 86.1400 85.6549 89.3278
Daubechies 10 84.2342 86.4865 85.6202 85.6895 89.2585
Daubechies 12 83.6105 86.4518 85.8281 87.3181 88.7387
Daubechies 14 83.4373 86.1400 85.9321 86.1400 88.5308
Daubechies 16 83.6452 86.6251 86.4865 86.4172 88.7734
Daubechies 18 83.4719 86.3825 86.1400 87.5953 89.3624
Daubechies 20 83.6105 86.3132 86.0707 86.3825 89.2931
Haar 2 85.3084 83.3333 81.2197 82.2245 85.9667

Table 4.5: Best percent accuracy classifying support vector machine testing corpora
across all values of C and γ. The five highest accuracies are in bold type.
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32 64 128 256 512
Acceleration History Time Window

Haar 2
Daubechies 20
Daubechies 18
Daubechies 16
Daubechies 14
Daubechies 12
Daubechies 10
Daubechies 8
Daubechies 6

B-spline 3,9
B-spline 3,7
B-spline 3,5
B-spline 3,3
B-spline 3,1
B-spline 2,8
B-spline 2,6
B-spline 2,4
B-spline 2,2
B-spline 1,5
B-spline 1,3
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Figure 4.12: Numeric data from Table 4.5 as a heat map for visual interpretation.
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spline 2,j notwithstanding, a longer acceleration history is preferable over the use

of a particular wavelet transform most of the time.

In an effort to improve classification accuracy above 89.4%, a simple method of

noise reduction signal processing now begins using the best overall acceleration data

time window, 512 data points, and wavelet transform, B-spline 3,3. Additionally,

misclassification costs are adjusted to reflect the relative frequency of +1 and -1

classes across all 12 simulator runs

C+

C−
=

n−
n+

=
68819
3605

≈ 19.09
1

(4.3)

in order to avoid repeating the unbalanced data errors described in Section 4.3.3,

and also to use misclassification costs that accurately describe the data from all

simulator runs used in the remainder of the analysis.

4.4 Signal Processing

A methodical search across the applicable parameter spaces has found a class of

discrete wavelet transform that produces superior results and established that

a longer acceleration history is necessary for classification accuracy. The final

refinement attempts to improve accuracy by removing less important features

from the wavelet transform of the acceleration data. Table 4.6 shows the results

of training the support vector machine using a B-spline 3,3 wavelet transform of

an acceleration data history that is 512 samples at 0.2 seconds per sample (102.4

seconds). All but the largest n coefficients in the wavelet transform have been set

to zero. Classification accuracy by the support vector machine improves over the
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Coefficients Preserved (Removed) 32 (480) 64 (448) 96 (416) 128 (388)

Best accuracy on training data 85.699% 89.4308% 91.7762% 92.4427%
Best accuracy on testing data 91.2681% 94.2174% 93.6043% 93.2509%

Table 4.6: Support vector machine classification accuracy given a signal with smaller
signal feature coefficients removed (noise reduced).
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Figure 4.13: Contour map of Support Vector Machine accuracy given signals with
the 480 smallest features removed.

original wavelet transform even though more than 80% of the feature coefficients of

the signal have been removed. Optimal noise reduction of the wavelet transform

would appear to lie somewhere in the neighborhood of the strongest 64 to 96 signal

features.
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Figure 4.14: Contour map of Support Vector Machine accuracy given signals with
the 448 smallest features removed.

11 11.5 12 12.5 13 13.5 14 14.5 15

1

1.5

2

2.5

3

Best accuracy on training corpus = 91.7762%

% Accuracy
91
90
89
88
87

log2(C)

log2(γ)

Figure 4.15: Contour map of Support Vector Machine accuracy given signals with
the 416 smallest features removed.
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Figure 4.16: Contour map of Support Vector Machine accuracy given signals with
the 384 smallest features removed.

4.5 Summary

This chapter has described the process of simulating an urban freeway, generating

and evaluating test events, with the goal of creating an artificially intelligent heuris-

tic that can distinguish desirable driver behavior events from undesirable ones. At

this point in the ongoing research, 12 simulator runs have generated 72,424 test

events using a simple freeway simulator with a proven vehicle dynamics model

across a wide range of traffic conditions. Each event consists of two things: initial

conditions (a longitudinal acceleration signal) and a test result (increase or decrease

in traffic flow). The initial conditions are transformed using a Discrete Wavelet

Transform to extract features from the signal. Events are classified by desireability

of outcome and used to train a heuristic in the form of a Support Vector Machine.
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The heuristic could then be used to provide intelligent feedback, at a later time, to a

driver that will allow the driver to mitigate congestion in urban freeway settings via

a smart phone application or embedded vehicle system. The heuristic can detect,

with greater than 94% accuracy, opportunities for a driver to take action that will

result in increased traffic flow.
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Chapter 5

Conclusion

5.1 Summary

This thesis attempts to identify conditions in a traffic stream leading up to a velocity

drop due to velocity shockwaves in contested traffic. The intent of identifying these

conditions is to provide intelligent feedback to a driver or autonomous system. The

driver or autonomous system may then take measures to dampen the shockwave,

improving traffic flow for the individual vehicle and following vehicles. Introducing

this destructive interference into the shockwave works against the emergent, self-

organizing, self-amplifying nature of stop-and-go traffic.

In order to develop an intelligent driver feedback heuristic, a microscopic traffic

model simulation is programmed. This simulation is structured to detect traffic

stream velocity drops, conduct experiments measuring traffic flow based on a

change in behavior premise by a sensor vehicle, and collect acceleration data prior
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to the change in behavior and the measure of traffic flow change resulting from the

change in behavior. Because little is known about the amount of vehicle history

required to make an accurate prediction, multiple lengths of acceleration data

history are kept for separate analysis.

Raw acceleration data are merely streams of numbers. This thesis seeks to extract

information from those data. Therefore, the acceleration data are processed using

a discrete wavelet transformation to extract oscillation features from the signal.

There are many different families of discrete wavelet transforms, each with many

members. All data generated by the simulations are processed with multiple types

of discrete wavelet transforms in order to determine the wavelet transform best

suited for this application.

Test events from the simulations are classified according to their impact on

traffic flow. Only events at the 95th percentile and above, corresponding to an

improvement on traffic flow of at least 1%, are classified as a desirable outcome.

The remainder of events are classified as undesirable outcomes. These classified

events, with their effect on traffic flow and associated discrete wavelet transformed

acceleration data, are then passed along to a support vector machine learning

algorithm as training and testing corpora.

Support vector machines are calculated across a range of operational parameters

and cross-validated to ensure the best possible classification accuracy. Results

show that more acceleration data history produces higher support vector machine

classification accuracy. Also, the B-spline 3, j family of support vector machines

produces somewhat higher support vector machine classification accuracy for this

application than other families of support vector machine.
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Noise reduction is speculatively performed on the wavelet transformed accelera-

tion data signal to remove smaller features of the signal. An improved classification

accuracy is observed even when more than 80% of the coefficients of the wavelet

transform are missing.

The final result of this work is a heuristic in the form of a support vector machine

model. This heuristic can identify conditions in the traffic stream suitable for provid-

ing positive feedback to an individual driver or vehicle with 94.2% accuracy. Acting

on that feedback by ceasing acceleration and maintaining velocity until braking

is needed will cause the driver to counteract congestion shockwaves, improving

traffic flow on the entire roadway by 1% to 3.5% over a subsequent five-minute

period.

5.2 Opportunities to Extend this Work

There is a long road between this work and implementation in a smart phone

application or embedded system in a driver assistance or autonomous vehicle

system, due to the gap between a simulated environment and real conditions. For

example, the work will need to be validated using a multi-lane microscopic traffic

model, where vehicles in adjacent lanes could undermine the goal of the heuristic

by entering the current lane. Several ways in which the work can be extended to

better approximate real conditions are listed below (Table 5.1).
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Current Implementation Possible Improvement

Intelligent Driver Model Human Driver Model
(Treiber et al., 2006a)

Single lane roadway Multi-lane MOBIL Model
(Kesting et al., 2007a)

Deterministic model Stochastic model

Ring road/closed system Real-world road network/open system

Homogeneous vehicles and dynamics Heterogeneous vehicles and dynamics

Noiseless acceleration data Noisy/missing acceleration data

102.4 second acceleration history Longer acceleration history,
perhaps 819.2 or 1638.4 seconds

Discrete Wavelet Transform Discrete Wavelet Packet Transform

SVM Binary Classification SVM Unary Classification

Artificial macroscopic traffic data Empirical macroscopic traffic data

Individual vehicle detection and action Cooperative vehicle detection and
action through information sharing

Table 5.1: Feature-by-feature comparison of implemented concepts and possible
replacement technologies that would better approximate real-world conditions.
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5.3 The Path to Implementing Intelligent Driver Feed-
back

Once a heuristic is finalized, a variety of supporting features are required:

1. Ability to reorient data from the accelerometer (Bhoraskar et al., 2012).

2. Ability to determine smart phone (vehicle) position on the earth in a battery-
friendly way (Ben Abdesslem et al., 2009).

3. Ability to determine that the vehicle is on a highway (map matching).

4. Implementation on smart phone platforms (Apple iOS, Google Android,
Microsoft Windows Phone, Mozilla Firefox OS, etc.).

5. Ability to detect if feedback was acted upon, and subsequent reporting to the
driver and reinforcement of the behavior.

5.4 Opportunities after Implementation

It is the goal of this work to have a tool for intelligent driver feedback which at

the very least benefits a single vehicle acting alone in a traffic stream and does not

worsen, and hopefully improves, traffic congestion for following vehicles. Taking

that condition as a given, and with the privacy of the driver in mind, there are a

few ways in which the application could be extended.

As a first example, assume that a driver who uses the intelligent feedback

application is also always using the same smart phone. By creating a profile of the

driver’s driving style over time, feedback may be customized to complement that

style (Chen et al., 2012). In the context of an embedded system, a small number

of static heuristics may be available for the system to use as part of a set of driver
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profiles. The end result would be not just intelligent, but customized feedback for

the driver.

A second example involves anonymously sharing information about the traffic

stream to a remote service for aggregation with information from other sources,

including other smart phones and vehicles using the heuristic. The application

could share current time, location, heading, velocity, and recent acceleration curve

features. By periodically reporting traffic conditions for an individual vehicle, in

particular when an event of note occurs (such as a velocity drop), a synoptic portrait

of the roadway may be constructed with greater detail than that available from

macroscopic traffic sensors. This overview would be useful in two ways.

First, a forecast of the expected arrival time of an active, traveling shockwave

could be communicated to any participating vehicles upstream of the shockwave

(Chen et al., 2012). The application could take this knowledge into account and

notify the driver of the upcoming congestion, incorporate the knowledge into its

own feedback heuristic, or both, amplifying the positive effect over a longer stretch

of roadway. An informed driver could, for instance, decide to exit the roadway

prior to reaching the congestion and use an alternate route. This could be described

as a very specific, lightweight type of connected vehicle technology.

Second, the aggregated view of the traffic stream could be of use to public and

private entities involved in traffic management, such as governmental transporta-

tion agencies, news agencies, and traveler information services. The combination of

data from fixed sensors in an Intelligent Transportation System and floating sensors

from smart phones could enhance traffic management and forecasting, improving

commuters’ experiences.
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5.5 Final Thoughts

Autonomous vehicles are several years away from availability and decades away,

perhaps, from prevalence. Connected vehicle development lags autonomous ve-

hicle development, though once standards and regulations are adopted, market

penetration will be faster. Today, however, a significant percentage of the working

public carries a device capable of sensing its environment and improving their

commute. Given the magnitude of traffic congestion and the global consequences

of inaction, pursuing every avenue toward a more intelligent transportation system

is a worthwhile endeavor.
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Appendix A

A.1 Computing Resources Used

Host Name System CPU Speed # CPU Cores Memory

dirk Dell Poweredge 1950 iii 3.0 GHz 8 32 GB
lerxst Dell Poweredge 1950 iii 3.0 GHz 8 32 GB
pratt Dell Poweredge 2900 iii 3.0 GHz 4 48 GB

- Amazon EC2 c3.8xlarge 2.8 GHz 32 64 GB
- Amazon EC2 c3.2xlarge 2.8 GHz 8 16 GB
- Amazon EC2 c3.2xlarge 2.8 GHz 8 16 GB

Table A.1

A.2 Software Used

Debian “Wheezy” version 7.4 GNU/Linux (Dell Poweredge systems)

Ubuntu “Saucy Salamander” version 13.10 GNU/Linux (Amazon EC2 systems)

Free Software Foundation gcc GNU Compiler Collection version 4.8.2, including
the GNU OpenMP Project (GOMP) extension
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libgmp GNU Multiple Precision Arithmetic Library version 5.1.3

libmpfr GNU MPFR Library version 3.1.2

libmpc GNU MPC Library version 1.0.2

libgsl GNU Scientific Library version 1.16

LIBSVM version 3.17

Gnuplot version 4.6 patchlevel 5

TEX version 3.1415926 (TEXLive 2013)
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A.3 Partial Compute Time Records

DWT Family Sample Length Sample Coefficients Clock Time Estimated CPU Hours

B-spline 1,3 256 256 0.753889 24.1244
B-spline 1,3 512 512 4.27639 85.5278
B-spline 1,5 256 256 0.813056 26.0178
B-spline 1,5 512 512 4.31889 86.3778
B-spline 2,2 512 512 4.07 81.4
B-spline 2,4 256 256 0.591389 18.9244
B-spline 2,4 512 512 4.16278 83.2556
B-spline 2,6 256 256 0.5875 18.8
B-spline 2,6 512 512 4.14056 82.8111
B-spline 2,8 256 256 0.588333 18.8267
B-spline 3,1 256 256 0.576667 18.4533
B-spline 3,3 256 256 0.587778 18.8089
B-spline 3,3 512 32 19.9194 398.389
B-spline 3,3 512 512 0.965 30.88
B-spline 3,3 512 64 35.3511 707.022
B-spline 3,3 512 96 62.6133 1252.27
B-spline 3,5 256 256 0.578333 18.5067
B-spline 3,5 512 512 0.949444 30.3822
B-spline 3,7 256 256 0.587222 18.7911
B-spline 3,7 512 512 0.970556 31.0578
B-spline 3,9 256 256 0.580556 18.5778
B-spline 3,9 512 512 0.957222 30.6311
Daubechies 6 256 256 0.582222 18.6311
Daubechies 6 512 512 0.972778 31.1289
Daubechies 8 256 256 0.588056 18.8178
Daubechies 8 512 512 0.965278 30.8889
Daubechies 10 256 256 0.573889 18.3644
Daubechies 10 512 512 0.958056 30.6578
Daubechies 12 256 256 0.560278 17.9289
Daubechies 12 512 512 0.956944 30.6222
Daubechies 14 256 256 0.573889 18.3644
Daubechies 14 512 512 0.969444 31.0222
Daubechies 16 256 256 0.574444 18.3822
Daubechies 16 512 512 0.960833 30.7467
Daubechies 18 256 256 0.565833 18.1067
Daubechies 18 512 32 0.729444 14.5889
Daubechies 18 512 64 0.746111 14.9222
Daubechies 18 512 96 1.00111 20.0222
Daubechies 18 512 128 1.27167 25.4333
Daubechies 18 512 160 1.53833 30.7667
Daubechies 18 512 192 1.77139 35.4278
Daubechies 18 512 224 2.01778 40.3556
Daubechies 18 512 256 3.86639 77.3278
Daubechies 18 512 288 4.00889 80.1778
Daubechies 18 512 320 3.96972 79.3944
Daubechies 18 512 352 3.93056 78.6111
Daubechies 18 512 384 4.07056 81.4111
Daubechies 18 512 416 4.03528 80.7056
Daubechies 18 512 448 4.16639 83.3278
Daubechies 18 512 480 4.09111 81.8222
Daubechies 18 512 512 0.964444 30.8622
Daubechies 20 256 256 0.569444 18.2222
Daubechies 20 512 512 0.963056 30.8178
Haar 2 256 256 0.738611 23.6356
Haar 2 512 512 1.0175 32.56

Total 204.21 4223.04

Table A.2: Elapsed real clock time and estimated CPU hours spent calculating
each listed Support Vector Machine. Many more Support Vector Machines were
calculated without logging information about their computation.
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K. Öǧüt and J. Banks. Stability of freeway bottleneck flow phenomena. Transportation
Research Record, (1934):108–115, 2005. ISSN 03611981.

R. K. Pachauri and Intergovernmental Panel on Climate Change. Climate change
2007: synthesis report: a report of the Intergovernmental Panel on Climate Change.
IPCC, WMO, Geneva, 2008. ISBN 9291691224 9789291691227.

R. Parasuraman and V. Riley. Humans and automation: Use, misuse, disuse,
abuse. Human Factors, 39(2):230–253, 1997. ISSN 00187208. doi: 10.1518/
001872097778543886.

B. Rebsamen, T. Bandyopadhyay, T. Wongpiromsarn, S. Kim, Z. Chong, B. Qin,
M. Ang, E. Frazzoli, and D. Rus. Utilizing the infrastructure to assist autonomous
vehicles in a mobility on demand context. 2012.

P. Richards. Shockwaves on the highway. Operations Research, 4:42–51, 1956.

A. Riener and A. Ferscha. Effect of proactive braking on traffic flow and road
throughput. 13th IEEE/ACM Symposium on Distributed Simulation and Real-
Time Applications, DS-RT 2009, pages 157–164, 2009. ISBN 15506525 (ISSN);
9780769538686 (ISBN).

R. Riley. Alternative cars in the 21st century: A new personal transportation. Society
of Automotive Engineers, 1 edition, Dec. 1994. ISBN 9781560915195. URL
http://www.osti.gov/scitech/servlets/purl/418700.

T. W. Sanchez. Poverty, policy, and public transportation. Transportation Research
Part A: Policy and Practice, 42(5):833 – 841, 2008. ISSN 0965-8564. doi: http:
//dx.doi.org/10.1016/j.tra.2008.01.011.

114



www.manaraa.com

ScanGauge. ScanGauge - Trip Computer + Digitial Gauges + ScanTools, 2013. URL
http://www.scangauge.com/.

A. Schadschneider, D. Chowdhury, and K. Nishinari. Stochastic transport in complex
systems from molecules to vehicles. Elsevier, Amsterdam; Oxford, 2011. ISBN
9780444528537 0444528539 9780080560526 0080560520. URL http://public.
eblib.com/EBLPublic/PublicView.do?ptiID=631944.

B. Schaller. New York City’s congestion pricing experience and implications for road
pricing acceptance in the United States. Transport Policy, 17(4):266–273, Aug. 2010.
ISSN 0967070X. doi: 10.1016/j.tranpol.2010.01.013. URL http://linkinghub.
elsevier.com/retrieve/pii/S0967070X10000326.

D. Schrank, B. Eisele, and T. Lomax. Annual Urban Mobility Report. Technical
report, Texas Transportation Institute, 2012. URL http://mobility.tamu.edu/
ums/.

C. Seligman. Feedback as an energy conservation strategy. Proceedings of the Human
Factors Society 22nd Annual Meeting, page 537, 1978.

O. Servin, K. Boriboonsomsin, and M. Barth. An energy and emissions impact
evaluation of intelligent speed adaptation. In IEEE Conference on Intelligent Trans-
portation Systems, Proceedings, ITSC, pages 1257–1262, Toronto, ON, 2006. ISBN
1424400945; 9781424400942.

J. Shibata and R. French. A Comparison of Intelligent Transportation Systems: Progress
Around the World Through 1996. Publication ITS-AMER-97-B011. ITS America,
1997. URL http://books.google.com/books?id=1ja9HAAACAAJ.

S. E. Shladover. Longitudinal control of automotive vehicles in close-formation
platoons. Journal of dynamic systems, measurement, and control, 113(2):231–241, 1991.

D. C. Shoup, A. P. Association, and others. The high cost of free parking, volume 7.
Planners Press, American Planning Association Washington, DC, USA:, 2005.

M. Sifuzzaman, M. R. Islam, and M. Z. Ali. Application of wavelet transform and
its advantages compared to Fourier transform. 2009.

G. Silberg and R. Wallace. Self-Driving Cars –The Next Revolution, 2012. URL
http://www.kpmg.com/us/en/issuesandinsights/articlespublications/
pages/self-driving-cars-next-revolution.aspx.

A. Smith. 46% of American adults are smartphone owners. Pew Internet & American
Life Project, 2012.

115



www.manaraa.com

M. J. Smith and G. Salvendy. Human Interface and the Management of Information.
Interacting in Information Environments, volume 4558 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, Beijing, China, 2007. ISBN 987-3-540-73353-9.
URL http://link.springer.com/book/10.1007%2F978-3-540-73354-6.

J. Sousanis. World Vehicle Population Tops 1 Billion Units | News & Analysis
content from WardsAuto, Aug. 2011. URL http://wardsauto.com/ar/world_
vehicle_population_110815.

K. Spieser, K. B. Treleaven, R. Zhang, E. Frazzoli, D. Morton, and M. Pavone. Toward
a Systematic Approach to the Design and Evaluation of Automated Mobility-
on-Demand Systems: A Case Study in Singapore. In Road Vehicle Automation,
Lecture Notes in Mobility. Springer, Aug. 2014. ISBN 978-3-319-05989-1. URL
http://hdl.handle.net/1721.1/82904.

I. Steinwart and A. Christmann. Support Vector Machines. Springer, 2008. ISBN
9780387772424. URL http://books.google.com/books?id=HUnqnrpYt4IC.

STMicroelectronics. LIS331DLH MEMS motion sensor: Ultra low power high
performance 3-axis digital accelerometer - STMicroelectronics, 2014a. URL http:
//www.st.com/web/catalog/sense_power/FM89/SC444/PF218132.

STMicroelectronics. L3G4200D MEMS motion sensor: three-axis digital output
gyroscope - STMicroelectronics, 2014b. URL http://www.st.com/web/catalog/
sense_power/FM89/SC1288/PF250373.

T. Stocker, Intergovernmental Panel on Climate Change, and Working Group I.
Climate change 2013: the physical science basis : Working Group I contribution to the
fifth assessment report of the Intergovernmental Panel on Climate Change. 2013. ISBN
9781107661820 110766182X.

Y. Sugiyamal, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-I.
Tadaki, and S. Yukawa. Traffic jams without bottlenecks-experimental evidence
for the physical mechanism of the formation of a jam. New Journal of Physics, 10,
2008. ISSN 13672630. doi: 10.1088/1367-2630/10/3/033001.

Transportation Research Board. TRB HCM Manuals Home, 2011. URL http:
//hcm.trb.org/.

Transportation Research Board. Transport Research International Documentation,
2014. URL http://trid.trb.org/.

M. Treiber. Dynamic traffic simulation, June 2011. URL http://www.
traffic-simulation.de/.

116



www.manaraa.com

M. Treiber and D. Helbing. Explanation of Observed Features of Self-Organization
in Traffic Flow. eprint arXiv:cond-mat/9901239, Jan. 1999.

M. Treiber and A. Kesting. An open-source microscopic traffic simulator. IEEE
Intelligent Transportation Systems Magazine, 2(3):6–13, 2010. doi: 10.1109/MITS.
2010.939208.

M. Treiber, A. Hennecke, and D. Helbing. Congested traffic states in empirical
observations and microscopic simulations. Physical Review E - Statistical Physics,
Plasmas, Fluids, and Related Interdisciplinary Topics, 62(2 B):1805–1824, 2000. ISSN
1063651X.

M. Treiber, A. Kesting, and D. Helbing. Delays, inaccuracies and anticipation in
microscopic traffic models. Physica A: Statistical Mechanics and its Applications, 360
(1):71–88, 2006a. ISSN 03784371. doi: 10.1016/j.physa.2005.05.001.

M. Treiber, A. Kesting, and D. Helbing. Understanding widely scattered traffic
flows, the capacity drop, and platoons as effects of variance-driven time gaps.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74(1), 2006b. ISSN
15393755. doi: 10.1103/PhysRevE.74.016123.

C. Tucker, R. Tucker, and J. Zheng. StopWatcher: A mobile application to improve
stop sign awareness for driving safety. International Journal of Vehicular Technology,
2012, 2012. ISSN 16875702. doi: 10.1155/2012/532568.

D. I. S. U. S. Census Bureau. Commuting (Journey to Work) Main, Sept. 2011. URL
http://www.census.gov/hhes/commuting/.

A. M. Uhrmacher and D. Weyns. Multi-Agent Systems: Simulation and Applications.
CRC Press, Inc., Boca Raton, FL, USA, 1st edition, June 2009. ISBN 1420070231,
9781420070231. URL http://www.crcpress.com/product/isbn/9781420070231.

UltraGauge. UltraGauge OBDII Scan tool & Information Center, 2014. URL http:
//www.ultra-gauge.com.

Universitat Politècnica de València and Grupo de Redes de Computadores. Driving
Styles, 2014. URL http://www.drivingstyles.info/index.php/en/.

U.S. DoT RITA ITS Joint Program Office. Safety Pilot, Mar. 2014a. URL http:
//www.its.dot.gov/safety_pilot/spmd.htm.

U.S. DoT RITA ITS Joint Program Office. Dedicated Short Range Communications,
Mar. 2014b. URL http://www.its.dot.gov/DSRC/index.htm.

117



www.manaraa.com

R. Vadde, D. Sun, J. Sai, M. Faruqi, and P. Leelani. A simulation study of using
active traffic management strategies on congested freeways. Journal of Modern
Transportation, 20(3):178–184, 2012. ISSN 2095087X. doi: 10.3969/j.issn.2095-087X.
2012.03.008.

M. van der Voort. Generating a new fuel efficiency support tool - Motivation,
state-of-the-art and salient feautures. CTS Working Paper 1997:9, 1997.

M. van der Voort, M. Dougherty, and M. Van Maarseveen. A prototype fuel-
efficiency support tool. Transportation Research Part C: Emerging Technologies, 9(4):
279–296, 2001. ISSN 0968090X. doi: 10.1016/S0968-090X(00)00038-3.

T. Vanderbilt. Traffic. Knopf Doubleday Publishing Group, 2008. ISBN
9780307270542. URL http://books.google.com/books?id=O4lsPQttQ5IC.

P. Varaiya. What we’ve learned about highway congestion. Access, 27:2–9, 2005.

M. Vollrath, S. Schleicher, and C. Gelau. The influence of Cruise Control and
Adaptive Cruise Control on driving behaviour - A driving simulator study.
Accident Analysis and Prevention, 43(3):1134–1139, 2011. ISSN 00014575 (ISSN).

C. Wang, M. Quddus, and S. Ison. A spatio-temporal analysis of the impact of
congestion on traffic safety on major roads in the UK. Transportmetrica A: Transport
Science, 9(2):124–148, 2013. ISSN 23249935. doi: 10.1080/18128602.2010.538871.

J. White, C. Thompson, H. Turner, B. Dougherty, and D. Schmidt. WreckWatch:
Automatic traffic accident detection and notification with smartphones. Mobile
Networks and Applications, 16(3):285–303, 2011. ISSN 1383469X (ISSN).

R. Wilson. Mechanisms for spatio-temporal pattern formation in highway traffic
models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 366(1872):2017–2032, 2008. ISSN 1364503X (ISSN).

H. Yeo and A. Skabardonis. Understanding Stop-and-go Traffic in View of Asymmet-
ric Traffic Theory. In W. H. K. Lam, S. C. Wong, and H. K. Lo, editors, Transportation
and Traffic Theory 2009: Golden Jubilee, pages 99–115. Springer US, 2009. ISBN
978-1-4419-0819-3. URL http://dx.doi.org/10.1007/978-1-4419-0820-9_6.

J. Yeon, S. Hernandez, and L. Elefteriadou. Differences in freeway capacity by day
of the week, time of day, and segment type. Journal of Transportation Engineering,
135(7):416–426, 2009. ISSN 0733947X. doi: 10.1061/(ASCE)0733-947X(2009)135:
7(416).

D. Yergin. The prize: The epic quest for oil, money & power. Simon and Schuster, 2011.

118



www.manaraa.com

K. Young and M. Regan. Driver Distraction: A review of the literature. Distracted
Driving, pages 379–405, 2007.

M. S. Young and N. A. Stanton. Malleable attentional resources theory: A new
explanation for the effects of mental underload on performance. Human Factors,
44(3):365–375, 2002. ISSN 00187208.

H. Zhang. A mathematical theory of traffic hysteresis. Transportation Research Part
B: Methodological, 33B(1):1–23, 1999. ISSN 01912615.

X. Zhang, D. Zhao, P. Han, and J. Shen. Multiple linear regression-based approach
to the analysis of multi-anticipative car-following behavior. 3rd International
Conference on Transportation Engineering, ICTE 2011, pages 156–161, 2011. ISBN
9780784411841 (ISBN).

Z. Zheng, S. Ahn, and C. Monsere. Impact of traffic oscillations on freeway crash
occurrences. Accident Analysis and Prevention, 42(2):626–636, 2010. ISSN 00014575
(ISSN).

Z. Zheng, S. Ahn, D. Chen, and J. Laval. Applications of wavelet transform for
analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations.
Transportation Research Part B: Methodological, 45(2):372–384, 2011. ISSN 01912615
(ISSN).

J. Zhou and H. Peng. Range policy of adaptive cruise control vehicles for improved
flow stability and string stability. IEEE Transactions on Intelligent Transportation
Systems, 6(2):229–237, 2005. ISSN 15249050. doi: 10.1109/TITS.2005.848359.

B. Zielke, R. Bertini, and M. Treiber. Empirical measurement of freeway oscillation
characteristics: An international comparison. Transportation Research Record,
(2088):57–67, 2008. ISSN 03611981. doi: 10.3141/2088-07.

119


